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Abstract

The immaturity of pluripotent stem cell (PSC)-derived tissues has emerged as a universal

problem for their biomedical applications. While efforts have been made to generate adult-

like cells from PSCs, direct benchmarking of PSC-derived tissues against in vivo develop-

ment has not been established. Thus, maturation status is often assessed on an ad-hoc

basis. Single cell RNA-sequencing (scRNA-seq) offers a promising solution, though cross-

study comparison is limited by dataset-specific batch effects. Here, we developed a novel

approach to quantify PSC-derived cardiomyocyte (CM) maturation through transcriptomic

entropy. Transcriptomic entropy is robust across datasets regardless of differences in isola-

tion protocols, library preparation, and other potential batch effects. With this new model, we

analyzed over 45 scRNA-seq datasets and over 52,000 CMs, and established a cross-

study, cross-species CM maturation reference. This reference enabled us to directly com-

pare PSC-CMs with the in vivo developmental trajectory and thereby to quantify PSC-CM

maturation status. We further found that our entropy-based approach can be used for other

cell types, including pancreatic beta cells and hepatocytes. Our study presents a biologically

relevant and interpretable metric for quantifying PSC-derived tissue maturation, and is

extensible to numerous tissue engineering contexts.

Author summary

There is significant interest in generating mature cardiomyocytes from pluripotent stem

cells. However, there are currently few effective metrics to quantify the maturation status

of a single cardiomyocyte. We developed a new metric for measuring cardiomyocyte mat-

uration using single cell RNA-sequencing data. This metric, called entropy score, uses the

gene distribution to estimate maturation at the single cell level. Entropy score enables

comparing pluripotent stem cell-derived cardiomyocytes directly against endogenously-
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isolated cardiomyocytes. Thus, entropy score can better assist in development of

approaches to improve the maturation of pluripotent stem cell-derived cardiomyocytes.

This is a PLOS Computational Biology Methods paper.

Introduction

The development of robust protocols for differentiation of pluripotent stem cells (PSCs) to a

range of somatic tissues has represented a huge advance in biomedical research over the past

two decades. Many somatic cell types are non-proliferative and difficult to obtain from

patients, and thus PSCs may be the most viable source for generating large quantities of spe-

cialized tissue. PSC-derived tissues have numerous promised applications in regenerative med-

icine, drug efficacy and toxicity screening, and in vitro disease modeling [1–5]. However,

clinical application of PSC-derived tissues has been limited thus far due to the failure of these

cells to mature to a fully adult-like phenotype ex vivo. This phenomenon has been observed in

a range of engineered tissue types, including cardiomyocytes (CMs) [6], hepatocytes [7], pan-

creatic islet cells [8], neurons [9], and others, and represents a major biomedical hurdle.

To date, numerous engineering approaches have been proposed to improve PSC-derived

tissue maturation. These approaches have included cocktails, induction of physical stimuli, co-

culture with other cells, and construction of three-dimensional tissues, typically with the goal

of recapitulating the native milieu [6,8,10–15]. Benchmarking the efficacy of these interven-

tions has been challenging, however, as functional assays for direct comparison of PSC-derived

cells to endogenous adult cells are often technically infeasible. Thus, most engineered tissues

are compared either to a two-dimensional in vitro control or at best one discrete (usually neo-

natal) in vivo timepoint, rather than across the continuous spectrum of in vivo maturation.

Several groups have proposed use of -omics data to compare engineered to in vivo tissues for

certain cells [16–19]. However, these approaches have been limited to bulk samples, which pre-

cludes their use when PSC differentiation yields highly heterogeneous populations.

scRNA-seq has emerged as a powerful tool for measuring the transcriptomes of large num-

bers of single cells, and is an intriguing candidate for new metrics of tissue maturation. Unfor-

tunately, differences in isolation protocols, library preparation methods, and sequencing

machines, among other factors, can imbue scRNA-seq data with batch effects that are difficult

to deconvolve [20,21]. In turn, this makes it difficult to directly compare expression of individ-

ual genes across datasets. While batch correction algorithms have been developed [22], they

are primarily designed for correcting or integrating datasets with multiple well-defined cell

types with significantly different gene expression patterns rather than one continuously evolv-

ing cell type. Thus, an optimal scRNA-seq-based metric of maturation must facilitate direct

comparison of maturation status while being robust to batch effects.

Here, we developed an approach based on quantifying gene distributions to assess PSC-

derived tissue maturation. Given the significant burden of cardiac disease [23], we focused our

analysis on CMs, the primary contractile cells of the heart. Our approach is based on the gener-

ally-observed phenomenon that less differentiated cells are typically more promiscuous in

their transcriptional activities of signaling pathways, leading to a diverse gene expression pro-

file. However, as they differentiate, they prune unnecessary signaling pathways and hone in on

a relatively narrow gene expression profile [24]. This observation has been leveraged in several
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previous approaches to study differentiation of stem cells to progenitors and subsequently to

committed lineages [25–30]. We applied this principle to study the maturation of committed

CMs by developing a metric based on a modification of the Shannon entropy of scRNA-seq

gene expression data. Our transcriptomic entropy-based metric not only adequately stages sin-

gle CMs, but that scores are consistent across datasets regardless of potentially confounding

batch effects. Using datasets from the literature, we performed a meta-analysis of CM matura-

tion based on transcriptomic entropy. We subsequently demonstrated the use of our approach

to infer the maturation status of PSC-CMs. While our primary focus was on CMs, we also

showed initial evidence of applicability to other celltypes, in particular pancreatic beta cells

and hepatocytes. These results establish transcriptomic entropy as a viable metric for bench-

marking PSC-derived tissue maturation.

Results

scRNA-seq CM reference captures maturation-related changes

As a first step, we sought to construct a reference scRNA-seq library for CM maturation.

Sequencing of postnatal CMs, which are large and fragile, has been previously limited [31].

Recently, however, we developed a method to isolate healthy adult CMs to generate high qual-

ity scRNA-seq libraries using large-particle fluorescence-activated cell sorting (LP-FACS) [32].

We used this approach to isolate CMs from Myh6-Cre; mTmG (aMHC x mTmG) mice, in

which cells expressing cardiac-specific myosin heavy chain are readily separated by GFP

expression (Fig 1A). We generated a library of ~1000 CMs from 12 points over the course of

maturation. Our reference particularly sampled cells within the first three weeks postnatally, as

this period may be critically relevant to the maturation process but is underrepresented in

existing CM scRNA-seq datasets.

Dimensionality reduction of our reference with uniform manifold approximation and

projection (UMAP) revealed a continuum of maturation from e14 in p56, in concordance

with previous results from our group and others [33–35] (Fig 1B). As an initial strategy, we

considered quantification of maturation status by integration of query datasets with our ref-

erence. We tested this approach by using mnnCorrect [36] to combine other in vivo CM

scRNA-seq datasets with our reference while correcting study-specific batch effects. While

this approach worked for some datasets, in other cases study-dependent batch-effects were

only partially corrected (Fig 1C). Moreover, integration often changed cell-to-cell distances

within our original reference itself. These results confirmed the difficulty of quantifying CM

maturation through a conventional dimensionality reduction/batch correction-based pipe-

line, and prompted us to seek other approaches for quantifying maturation from scRNA-seq

data.

Shannon entropy of single cell gene expression decreases over CM

maturation

We next considered an approach based on gene distribution changes. Following terminal dif-

ferentiation, CMs undergo a lengthy maturation process characterized by gradual and unidi-

rectional changes in gene expression [17]. Based on previous findings, we proposed a model

for transcriptional maturation of CMs analogous to cellular differentiation (Fig 1D). In this

model, nascent cardiomyocytes express a broad gene expression profile. However, as they

mature, they slowly reduce expression of immature gene pathways (e.g. cell cycle) while upre-

gulating genes required for mature function (e.g. sarcomere, calcium handling, oxidative phos-

phorylation). These gradual changes in gene distribution can be quantified by established
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diversity metrics such as the well-known Shannon entropy. In our model, immature myocytes

will present with high transcriptomic entropy, which subsequently decreases in a continuous

manner over the course of maturation.

To test the validity of this model, we computed the Shannon entropy S on the unique

molecular identifier (UMI) counts of our maturation reference (Fig 1E). Entropy gradually

decreased from e14 to p56, with a notable shift from p4 to p8, thereby supporting our hypothe-

sized entropy model. We additionally plotted the averaged gene distributions for each time-

point (Fig 1F). As expected, earlier timepoints showed a more broad distribution compared to

later timepoints. These results supported the use of Shannon entropy to quantify CM matura-

tion status from scRNA-seq data.

Fig 1. scRNA-seq constructs a reference for CM maturation. A. Mouse model used to generate perinatal maturation

reference scRNA-seq library. In the aMHC-cre x mTmG mouse, CMs are labeled by GFP. This image was obtained and

modified from “Brown Mouse Lab” by SVG-Clipart.com under a CC BY 4.0 license. B. UMAP dimensionality reduction

(via Monocle 3) for the maturation reference. C. mnnCorrect-based integration of Wang and Yao et al. dataset with

reference dataset. D. Our model for changes in gene distribution over CM maturation. As CMs undergo the maturation

process, they transition from a broad gene distribution (characterised by high entropy) to a more narrow distribution

(characterised by low entropy). E. Shannon Entropy S computed for each timepoint in the maturation reference dataset.

F. Smoothed density estimates for genes expressed at 0–5000 counts per million (CPM) for each timepoint in the

maturation reference dataset.

https://doi.org/10.1371/journal.pcbi.1009305.g001
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Gene and cell filtration are necessary for cross-study comparison

Given the correspondence between Shannon entropy and CM maturation status, we next

sought to determine whether we could extend our transcriptomic entropy model to many CM

scRNA-seq datasets generated across multiple labs. We identified publicly available scRNA-

seq datasets containing CMs isolated in vivo (S1 Table). Our meta-analysis included 34 mouse

datasets and 5 human datasets spanning numerous timepoints across the range of develop-

ment. Additionally, the collected datasets represented significant diversity in terms of isolation

methods, sequencing protocols, mapping/counting pipelines, and datatypes (including reads

from full-length scRNAseq protocols, 3’ counts from UMI protocols prior to UMI collapsing,

and UMIs). However, several technical challenges prevented accurate cross-study comparison

of Shannon entropy computed on raw, unfiltered datasets. These particular challenges and our

solutions are addressed here.

Handling multiple mapping/counting pipelines. One problem that was observed in cer-

tain sequencing mapping/counting pipelines was the incorrect mismapping of mitochondrial

reads to pseudogenes. In mice, fragments of the mitochondrial genome are present as pseudo-

genes in the nuclear genome (termed nuclear mitochondrial insertion sequences [37]). These

fragments often show identical or near-identical sequences to mitochondrial genes. Thus reads

are often multi-mapped between canonical mitochondrial genes and pseudogenes, leading to

inaccurate gene quantification in pipelines counting multi-mapping reads. This issue was par-

ticularly problematic for CMs, as they naturally express high amounts of mitochondrial genes

[32].

As our goal was to enable entropy to be widely usable across many protocols, we included

an approximate pseudogene correction in our pipeline. We identified cross-mappings between

pseudogenes and canonical genes, and subsequently removed all pseudogene counts and

added them to the corresponding canonical mitochondrial genes. To test the efficacy of our

pseudogene correction, we tested the entropy score and well as mitochondrial gene percent-

ages before and after correction for several mapping/counting methods (Figs 2A and S1). As a

genomic method, we used the zUMIs pipeline [38], which uses STAR for mapping followed by

FeatureCounts for counting. In this method, multimapping counts are effectively randomly

allocated between mitochondrial reads and pseudogenes. As a transcriptomic method, we uti-

lized kallisto|bustools [39]. We used kallisto|bustools with two indices–a full index containing

all mouse cDNAs from ENSEMBL (kb.full), and an index containing only protein coding,

lincRNAs, and antisense RNAs analogous to the Cell Ranger index (kb.cellranger). Lastly, we

also used Cell Ranger, a part of the 10x Genomics pipeline. The Cell Ranger index does not

contain pseudogenes, and thus does not feature mitochondrial read mismapping.

The results of correction are shown for p56 samples in our reference (Fig 2A). Prior to cor-

rection, zUMIs and kb.full produced datasets with lower mitochondrial read percentage and

therefore higher entropy. However, post-correction, these datasets showed entropy and mito-

chondrial read percentages that were nearly identical to kb.cellranger and Cell Ranger. Thus,

datasets prepared using methods that include multi-mapping reads will be sufficiently cor-

rected for cross-study comparison.

Ribosomal protein-coding genes. By default, we included for analysis genes with gene

biotype “protein coding,” “antisense,” or “lncRNAs,” so as to focus on the key players of the

transcriptome. We additionally considered ribosomal protein-coding genes, and found signifi-

cant protocol-related biases in terms of expression of these genes (Figs 2B and S2). In particu-

lar, 10x Chromium and STRT-seq datasets appeared to have systematically higher percentages

of ribosomal protein-coding genes than other protocols. This observation anecdotally matches

observations made by others and likely indicates a protocol bias, though we are unsure about
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the reason this occurs. Therefore, we removed all ribosomal protein-coding genes prior to

computation of entropy.

Variations in study sensitivity. Different scRNA-seq datasets will invariably detect differ-

ent numbers of genes as a consequence of differences in sequencing depth and sequencing

protocol sensitivity [40]. However, higher sensitivity can lead to artificially higher entropy sim-

ply by inclusion of more terms in the summation. An example of this effect is shown in Fig

2C, where we compared our reference (median 3000 genes/cell) against our previously gener-

ated dataset (Murphy et al., median 7044 genes/cell). We thus explored subsampling of genes

as a way to standardize for the summation term in entropy and therefore sensitivity

Fig 2. Gene filtration facilitates cross-study comparisons of entropy. A. Correction of mismapped mitochondrial

reads. The use of a genomic mapping algorithm (such as zUMIs) or a “full” reference containing pseudogenes can lead to

erroneous mapping of mitochondrial genes to pseudogenes, in turn inflating entropy score. We included a correction

step that facilitates usage of data from a range of mapping pipelines. B. Proportion of ribosomal protein coding genes in

mouse in vivo datasets, grouped by library preparation method. Given the clear protocol-dependence of these genes, we

eliminated them from analysis. C. Entropy at different gene subsamplings for two studies with different sensitivities.

Data from e18 and p22 from the maturation reference and p21 from Murphy et al. are shown. D. Spearman correlation

between entropy and timepoint for different gene subsamplings (using median of entropy for each timepoint and study).

E. Normalized variance of entropy for different gene subsamplings (using median of entropy for each timepoint). We

normalized by scaling entropy at every subsampling to [0, 1].

https://doi.org/10.1371/journal.pcbi.1009305.g002

PLOS COMPUTATIONAL BIOLOGY Transcriptomic entropy quantifies cardiomyocyte maturation at single cell level

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009305 September 17, 2021 6 / 21

https://doi.org/10.1371/journal.pcbi.1009305.g002
https://doi.org/10.1371/journal.pcbi.1009305


differences. Selecting the optimal number of genes for subsampling required balancing two

priorities. Too many genes would result in overemphasis on sensitivity differences and incor-

rect separation of cells with similar developmental stage, as above. However, as entropy does

not scale linearly with subsampled genes, too few genes would result in compression of the

dynamic range of the metric and similar scores for cells at different developmental stages. We

optimized the former by seeking to maximize Spearman correlation between entropy and

timepoint (Fig 2D), and the latter by seeking to maximize the variance of normalized entropy

across timepoints at each subsampling (Fig 2E). We selected 1000 genes as a reasonable sub-

sampling based on both sets of results, though we would have obtained comparable results for

400–1500 genes.

Identifying poor quality datasets. Not all of the datasets identified were of sufficient

quality for downstream analysis. This issue is particularly severe for CMs, where adult CMs are

highly difficult to isolate at the single cell level by a number of classical methods, such as con-

ventional FACS, single cell picking, or microfluidic devices such as the Fluidigm C1 [32]. To

identify such datasets, we used the percentage of mitochondrial reads as a quality control met-

ric, discarding datasets with unusually high percentages (Fig 3A). Currently, there is no auto-

mated approach for easily identifying poor quality datasets. We thus erred on the side of

caution, and tried to avoid eliminating datasets without clear rationale for doing so. We out-

lined our rationale for discarding any datasets in the S1 Text, with the hope that transparency

could suffice in the current absence of more rigorous dataset disqualification criteria.

In addition, we assessed the maximum dataset depth necessary for a study to be appropri-

ately quantified by entropy. We tested several datasets with a range of baseline depths, and per-

formed subsampling to determine a minimum required depth for accurate entropy

quantifications (Figs 3B and S3). We defined accuracy based on the deviation from the base-

line entropy, and set a threshold of 98% accuracy (corresponding ~0.1 change in entropy).

Entropy was relatively robust to subsampling, with 98% accuracy being achieved at above

~2000–4500 counts/cell, depending on the dataset. While this depth was sufficient for most of

our assayed datasets, some very low-depth datasets were affected–in particular, all four Drop-

seq datasets tested had depths ranging from 1500–4100 counts/cell. Given these results, we

omitted the Drop-seq datasets from further analysis.

Quality control of poor-quality cells. Outside of dataset filtering, within-dataset quality

control is an essential step in all scRNA-seq protocols [41–43]. Protocols will inevitably gener-

ate cells that have been lysed or damaged, making them unsuitable for downstream analysis.

As our study involves a meta-analysis of many independently generated datasets, we aimed to

establish a standardized approach for quality control. This had the dual benefits of ensuring at

least a minimal level of comparability while limiting the need to determine individual thresh-

olds for each dataset. We focused on two primary metrics of quality control–cell depth and

percentage of reads going to the top 5 highest expressed genes in each cell. We selected these

metrics because we observed that they most affected quantification of entropy score (Fig 3C)

We then defined normalized metrics based on both measurements by dividing the respective

measurement by the median of that measure in that study and in that timepoint. Thus, while

comparable cross-study, the metrics could be considered with respect to potential biological

and technical variation. We then set a standardized threshold across all studies (S4 Fig).

Identifying CMs. In terms of cell-type filtration, our input datasets were fairly heteroge-

neous, with some including only CMs while others were more broad. Thus, we used Single-

CellNet [44] to identify and retain only cells with CM signature. SingleCellNet uses top-

scoring pair to enable cross-platform comparisons of test data against a training dataset to

annotate celltypes, and has performed well in benchmarking [45]. We used the Tabula Muris

[46] as a reference dataset to test against many celltypes. However, as the Tabula Muris is
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constructed on adult tissues, we were concerned that early-stage CMs may be poorly

classified. We thus tested the predicted cell annotations from SingleCellNet across our

mouse in vivo datasets. We classified a cell as a CM if its score for “cardiac muscle cell” was

higher than the score for any other celltype. We found that, while prediction scores for CMs

increased over time, CMs were identified as early as e7.5, corresponding appropriately to the

onset of cardiomyogenesis (Fig 3D). In human in vivo datasets, CMs were present by embry-

onic week 5, which was the earliest timepoint for which we had data (S5 Fig). These results

supported the use of the Tabula Muris reference with SingleCellNet, even for identifying

nascent CMs.

Fig 3. Standardized cell and study filtration enables meta-analysis of CM maturation with entropy. A. Mitochondrial

gene fractions in mouse in vivo datasets. Datasets with unusually high proportions are highlighted in red and were removed

from subsequent analysis. B. Subsampling of count depth in Dueck et al. dataset (the highest depth dataset in our analysis).

We subsampled to a depth where the median number of genes remained> 1000. We subsequently computed the accuracy as

deviation from baseline entropy. C. Unusually low entropy cells due to high top 5 gene percentage (top) or low depth

(bottom) in the Churko et al. dataset. D. SingleCellNet CM scores for mouse in vivo datasets by timepoint. Cells are labeled

based on whether their highest classification was for “cardiac muscle”.

https://doi.org/10.1371/journal.pcbi.1009305.g003
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Entropy score enables cross-study inference of maturation status

Based on the previous results, we developed a workflow for addressing major technical con-

founding variables to enabling cross-study comparisons (Fig 4A). The output of our workflow

is the computed Shannon entropy on the filtered datasets, which we refer to as entropy score
through the remainder of the manuscript. We tested the utility of entropy score on our previ-

ously identified mouse and human in vivo CM datasets, which after filtration composed

36,436 CMs. Entropy score gradually decreased over developmental time, as hypothesized by

our model (Figs 4B and S6). Notably, despite the marked heterogeneity of dataset characteris-

tics, entropy score was consistent at similar timepoints across multiple datasets. In particular,

entropy score showed remarkable concordance between datasets featuring different datatypes.

For example, using four UMI-based datasets generated by our group, we found that the ratio

of entropy score computed prior to versus after UMI collapsing was 1.02 (S7 Fig).

In the mouse in vivo datasets, entropic changes occurred in three broad phases (Fig 4B). In

the embryonic phase (~e7.75-e16.5), entropy score decreased at a relatively slow rate. Upon

initiation of the perinatal phase at e16.5, entropy score decreased more rapidly before converg-

ing onto a relatively mature adult-like phase at p21. These changes correspond well to previous

literature about the dynamics of CM maturation, in particular regarding the perinatal CM

maturation window [47].

We were additionally curious about the efficacy of entropy score to capture the maturation

status of human CMs. We found that there was good concordance in entropy score between

stage-matched mouse and human tissues (Fig 4B). In particular, fetal tissues (ranging from

embryonic week 5 to embryonic week 22) corresponded approximately to e13.5-e14.5 in mice,

while adult human CMs presented with entropy score comparable to adult mouse CMs. We

did observe that one dataset (Sahara et al.) showed a notably lower entropy score at embryonic

weeks 7–8, though we suspect this may have to do with dataset quality issues. Taken as a

whole, however, these results support the use of entropy score as a cross-study, cross-species

metric of CM maturation.

Entropy score recapitulates gene expression trends in CM maturation

We next tested whether entropy score computationally ordered single CMs based on their pro-

gression along the maturation process, akin to so-called trajectory inference or pseudotime

analysis methods. We selected three well-known trajectory inference methods–Monocle 2,

Slingshot, and SCORPIUS–based on their performance in recent benchmarking studies, par-

ticularly with reconstructing unidirectional topologies [48]. We then performed trajectory

inference with our maturation reference dataset and compared the resultant pseudotimes with

entropy score. Additionally, we identified genes differentially expressed over pseudotime/

entropy score for each method respectively. Entropy score correlated only moderately with

pseudotimes for the three methods (Figs 4C and S8). However, there was notable overlap in

identified differentially expressed genes (Fig 4D). In particular, ~93.6% of genes identified as

differentially expressed over entropy score were also identified by at least one other method,

and ~81.5% were identified as differentially expressed by all methods. Moreover, when treated

as a pseudotime metric, entropy score accurately recapitulated known CM maturation gene

expression trends (Fig 4E). We further tested entropy score as a pseudotime metric in datasets

composed of only one biological timepoint but a range of entropy scores. Intriguingly, gene

expression trends across entropy score in these one-timepoint datasets largely matched the

trends observed in our maturation reference dataset (S9 Fig). These results suggest that

entropy score can effectively reconstruct the CM maturation trajectory as it occurs
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Fig 4. Entropy score enables cross-study and cross-species comparison of CM maturation status, and recapitulates gene

trends in CM maturation. A. Workflow for computing entropy score from high quality scRNA-seq datasets. B. Entropy score

for mouse and human in vivo CMs taken from publicly available datasets. HEW = human embryonic week, HPY = human

postnatal year. C. Pearson correlation between entropy score and calculated pseudotimes for our maturation reference dataset

for three trajectory inference methods: Monocle 2, Slingshot, and SCORPIUS. D. Venn diagram showing overlap in identified

differentially expressed genes between entropy score and trajectory inference methods. Differentially expressed genes were

identified by fitting generalized additive models to gene trends over the corresponding pseudotime in Monocle 2, and selecting

genes with adjusted p-value< 0.05. E. Gene expression trends over entropy score for genes involved in CM maturation,

including sarcomeric, cell cycle, metabolism, and calcium handling genes.

https://doi.org/10.1371/journal.pcbi.1009305.g004
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heterogeneously at the single cell level, and can accurate quantify single CM maturation status

regardless of the biological timepoint of the sample.

Human PSC-CMs do not mature beyond embryonic stage

Having validated entropy score as a metric of CM maturation in vivo, we next tested the

entropy score of PSC-CMs from publicly available datasets (S2 Table). We identified 8 datasets

of directed differentiation of human induced PSCs to CMs, and analyzed 13,171 cells between

D(ay)9 and D100 of differentiation post-filtering. Though there was some variation from

study to study (perhaps due to line-to-line differences or variations in differentiation proto-

col), there was modest decrease in entropy score over the course of differentiation (Fig 5A).

However, no study generated CMs with entropy score lower than human fetal tissues, con-

firming the immature nature of PSC-CMs. Moreover, there was limited change in entropy

Fig 5. Entropy score quantifies maturation status of PSC-CMs and iCMs. A. Comparison in entropy score between human

in vivo CMs and human PSC-CMs. Left side of figure reproduced from Fig 4B. B. Comparison in entropy between mouse in

vivo CMs and mouse iCMs. Left side of figure reproduced from Fig 4B. C. Entropy score for three reprogramming pathways—a

canonical Tnnt2+ iCM pathway and two alternative pathways (Ccnb1+ and Mmp3+).

https://doi.org/10.1371/journal.pcbi.1009305.g005
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score in PSC-CMs after D45, even with long-term culture up to D100, suggestive of maturation

arrest. Interestingly, the entropy score of these later timepoint PSC-CMs corresponded to the

initiation of the perinatal phase of mouse CM maturation in vivo. This observation may point

to dysregulation of the endogenous perinatal maturation program during in vitro directed dif-

ferentiation as a cause of poor PSC-CM maturation status, and merits further investigation.

Reprogrammed CMs present with embryonic-like maturation status

In addition to directed differentiation of PSCs, another approach that has been explored to

generate CMs ex vivo is direct reprogramming of fibroblasts to CM-like cells (iCMs) by tran-

scription factor, microRNA, and cytokine cocktails [49]. We used entropy score to analyze a

dataset of reprogramming of mouse neonatal fibroblasts to iCMs by overexpression of Gata4,

Mef2c, and Tbx5. Focusing only on cells with CM-like signature, we found that entropy score

showed limited change between D3 and D14 of reprogramming (Fig 5B). iCMs remained at a

mid-embryonic stage of maturation, comparable to e13.5-e14.5 in mouse in vivo CMs. More-

over, compared to PSC-CMs at the same timepoint of differentiation, iCMs displayed higher

entropy. This result matches earlier findings that direct reprogramming less effectively recapit-

ulates native gene regulatory networks compared to directed differentiation [50].

We further explored change in entropy score across multiple reprogramming pathways.

The authors of the dataset identified a branching reprogramming trajectory [51]. Repro-

grammed cells entered either a canonical iCM route (e.g. Tnni3+) or two alternative path-

ways–one characterised by activation of Mmp3 and another marked by cell cycle progression

(e.g. Ccnb1+). Using the authors’ annotations, we classified all cells in the dataset (including

those without a CM signature) into one of these three pathways and assessed the entropy score

for cells in each pathway (Fig 5C). At D1 of reprogramming, cells in all three pathways show

similar entropy score. However, from D1 to D3, cells in the canonical iCM pathway show

more notable decrease in entropy score, and indeed remain at a lower entropy score than cells

in other pathways. Thus, while iCMs still present with a notably immature status compared to

in vivo, they display some improvement in maturation status compared to cells arrested in

alternative reprogramming pathways.

Entropy score decreases over pancreatic beta cell and hepatocyte

maturation

We primarily focused our attention to the challenge of quantifying PSC-CM maturation, given

the significant clinical need for generating CMs ex vivo. However, incomplete maturation and dif-

ficulty in assessing maturation status affect other tissue contexts as well. As proof of concept, we

computed entropy score for in vivo mouse datasets of pancreatic beta cells (Fig 6A) and hepato-

cytes (Fig 6B). As with CMs, entropy score decreased over time for both celltypes, though with

celltype-specific dynamics. For example, beta cells show a large postnatal drop in entropy score,

likely corresponding to birth-related metabolic changes and need for insulin. By contrast, hepato-

cytes show a more steady decline in entropy score, though further datasets will be necessary to

more thoroughly characterize these dynamics. Moreover, it must be noted that unlike CMs, beta

cells and hepatocytes may continue to proliferate postnatally [52,53], which may affect the inter-

pretation of the entropy score in older tissues. Nevertheless, these preliminary results support the

applicability of entropy score to non-cardiac tissue engineering contexts as well.

Discussion

Here, we present the use of transcriptomic entropy score for quantifying cellular maturation at

the single cell level. Our approach builds on the well-known Shannon entropy to generate a
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metric of CM maturation from scRNA-seq data that is robust to a range of sequencing proto-

cols and potential batch effects. In particular, entropy score enables direct benchmarking of in
vitro PSC-CM maturation against their in vivo counterparts. This is particularly important

because endogenous development is the gold standard for instructing PSC-derived tissue mat-

uration. Correspondingly, we believe that perturbations to engineer maturation must be com-

pared against this gold standard rather than an in vitro control. Our newly developed entropy

score enables comparison of PSC-CMs against the full trajectory of endogenous CM matura-

tion. Entropy score can thus be used to better assess PSC-CM maturation methodologies, and

guide development of tissues that better recapitulate the adult CM phenotype. Moreover, while

we focused on CM maturation here, we demonstrated the extensibility to other tissues as well.

Given the increasing availability of both endogenous and PSC-derived scRNA-seq datasets, we

expect that broad application of entropy score will enable development of improved tissues for

clinical use.

It should be noted, however, that we do not see entropy score as the end-all for maturation

quantification. In addition to potential discrepancies between transcript and protein level

expression [54], the mature cellular phenotype encompasses numerous functional parameters

that may be only partially captured at the transcriptomic level [55]. We envision entropy score

as complementing existing celltype-specific functional assays to advance a more complete

assessment of single cell maturation status. One other caveat that must be noted is that similar

entropy score alone does not guarantee identical or matching gene expression patterns

between samples. However, our results do indicate that entropy score serves as a strong general

readout of tissue maturation. Moreover, given the difficulty of comparing expression values

across scRNA-seq datasets, entropy score may serve as a useful approximation of identifying

samples with similar maturation states.

Through meta-analysis of over 45 scRNA-seq datasets of CMs, we were able to gain some

insights into the dynamics of CM maturation. In particular, we were interested to note the

existence of a perinatal phase of maturation in vivo, initiating at approximately e16.5-e18.5,

during which CM entropy score rapidly decreased. Entropy score continued to decrease until

approximately ~3–4 weeks postnatally. We previously hypothesized the existence of a critical

perinatal window for CM maturation, and postulated that disruption of this window in vitro
leads to maturation arrest [47]. The significant decrease in entropy observed in our study

Fig 6. Entropy score decreases over maturation in non-CM tissue contexts. A. Entropy score for mouse in vivo

pancreatic beta cells taking from publicly available datasets. B. Entropy scores for mouse in vivo hepatocytes.

https://doi.org/10.1371/journal.pcbi.1009305.g006
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supports the perinatal window hypothesis. Moreover, late-stage PSC-CMs remained arrested

at an entropy score similar to those of e16.5 CMs in vivo. To date, mechanistic understanding

of PSC-CM maturation arrest has been limited, but may involve progressive disruption of car-

diac gene regulatory networks [17]. Our results suggest that increased focus should be placed

on trying to understand regulators of perinatal maturation in vivo, and determining discrepan-

cies in activity of these regulators in vitro. In particular, we anticipate that entropy score can

serve as a readout for mosaic-based screening systems for identifying perinatal CM maturation

regulators [56]. Whether similar mechanisms underlie maturation arrest in other PSC-derived

cells remains a question for further studies.

In this study, we found that entropy score could be applied to scRNA-seq datasets generated

from a wide range of protocols. Excluding the quality control steps, entropy score is computed

from information in one cell at a time, independent of other cells or datasets. Nevertheless,

entropy score shows strong concordance with CM maturation status in a comparable manner

across dataset. This is particular novel as, thus far, direct comparisons across studies has been

limited by confounding batch effects. Moreover, current batch correction algorithms may be

poorly suited to integration of datasets along a continuous trajectory. Additionally, scaling

batch correction algorithms to many datasets may be complex and computationally intensive.

By contrast, entropy score has limited computational demands and can scale easily to allow for

comparison of many datasets.

We were particularly intrigued to note the comparability of entropy scores across datasets

with entirely different datatypes (e.g. reads, UMIs). For example, it is well known that PCR

amplification in scRNA-seq protocols can lead to biases [57], which was one of the motivations

for the development of UMIs. However, entropy scores were comparable for UMI datasets

prior to and after collapsing UMIs. Likewise, datasets generated from full-length protocols did

not display notable biases in entropy score. This observation may have been incidental to the

datasets we studied–for example, high quality datasets may have presented with sufficiently

low amplification bias to enable comparison. It is possible that entropy score is less robust to

more extreme cases of amplification bias. We do not believe our finding precludes the use of

best practices for scRNA-seq protocols, including the use of UMIs for many experimental

designs. Nevertheless, we were encouraged that entropy score could be used to facilitate cross-

comparison between otherwise incompatible datatypes.

One technical limitation of entropy score was its poor performance with Drop-seq datasets.

We consistently found that Drop-seq datasets presented with higher entropy than data gener-

ated at similar timepoints through other protocols. This may be a consequence of depth; the

Drop-seq datasets that we tested were the lowest depth studies tested and below our identified

optimal depth threshold. However, given the increasing prevalence of other high-quality drop-

let-based protocols (in particular, 10x Chromium), we believe this is not a major limiting fac-

tor to the use of entropy score. We additionally did not test single nuclear RNA-seq datasets,

both due to concerns of depth and because we expected that the gene distribution would be

inherently different from whole cell studies [58]. Nevertheless, the emergence of methods for

isolation of whole adult CMs in mouse and human [32,59,60] may reduce the future need for

nuclear RNA-seq.

At the single cell level, CM maturation proceeds heterogeneously along a unidirectional tra-

jectory [33]. We were therefore curious to know the extent to which entropy score could cap-

ture single cell positioning along this trajectory, in effect functioning as a pseudotime metric.

Entropy score only modestly correlated with other established pseudotime methods, though

all methods recovered similar differentially expressed genes. These discrepancies may be due

to transcriptomic noise in single cell data. However, it should be emphasized that entropy

score works in a fundamentally different manner than many trajectory inference methods.
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Most trajectory inference methods utilize some type of dimensionality reduction step prior to

curve fitting. By contrast, outside of the subselection of highly expressed genes, entropy score

uses no dimensionality reduction step. Moreover, entropy score makes no assumptions about

relationships between cells–all relevant information is calculated independently for each cell.

Despite being agnostic to cell-cell relationships, entropy score accurately captures CM matura-

tion expression trends. Commonly used dimensionality reduction methods have been shown

to distort local neighbourhoods and affect trajectory reconstruction [61], and thus entropy

score may more optimally capture single CM dynamics in maturation.

Entropy score has several important antecedents that must be acknowledged. Our work is

similar to StemID [29], which uses Shannon entropy to assign progenitor state within a trajec-

tory. We extend this usage with several gene filtering steps to better facilitate cross-study com-

parison. Shannon entropy is also utilized in SLICE [27], which computes entropy based on

functional annotations of genes, and SCENT [25], which computes entropy within a protein-

protein interaction network. Both approaches are powerful for constructing trajectories for

differentiating cells. However, unlike differentiation, CM maturation is characterized by con-

tinuous rather than step-wise or switch-like changes. For this purpose, an entropy score built

directly on gene expression levels is both simpler to compute and more appropriate. Lastly,

our work is similar conceptually to CytoTRACE [28], which leverages gene diversity to order

cells by differentiation status. Directly comparing number of genes expressed by each cell is

confounded by cross-study differences in depth and sensitivity, however. CytoTRACE

addresses this by using a smoothing step within dataset. However, this limits its use for datasets

with few cells or representing fewer maturation states. By contrast, outside of quality filtering,

entropy score performs computations on each cell independently, extending its utility to more

datasets. We believe these differences improve the utility of entropy score for benchmarking

the maturation status of PSC-derived tissues.

Methods

Ethics statement

All animal experiments done as part of this manuscript were approved under protocols by the

Johns Hopkins Animal Care and Use Committee (IACUC Welfare Assurance number A3271-

01).

Raw data for the maturation reference can be found on GEO at GSE147807. Code to gener-

ate figures in this manuscript as well as the counts tables for the datasets analyzed in this man-

uscript can be found on Github at https://github.com/skannan4/cm-entropy-score.

Shannon entropy has had long-standing applications in developmental biology as well as

transcriptional analysis [30,62]. A standard form for Shannon entropy S is:

S ¼ �
X

i

Pi logðPiÞ

where Pi represents individual probabilities for events of interest. Here, we define Pi as the

probability of selecting a given gene i in a cell. From scRNA-seq data, this can be computed by

simply dividing the number of counts for gene i by all of the gene counts in a given cell. For

our entropy score, we similarly use Shannon entropy, except after subsetting the top 1000

highest expressed genes to enable sensitivity control.

Generation of maturation reference

Mice. To generate mice for our reference dataset, we crossed B6.FVB-Tg(Myh6-cre)

2182Mds/J mice (aMHC-cre, Jackson Laboratory, Stock No. 011038) with B6.129(Cg)-Gt

PLOS COMPUTATIONAL BIOLOGY Transcriptomic entropy quantifies cardiomyocyte maturation at single cell level

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009305 September 17, 2021 15 / 21

https://github.com/skannan4/cm-entropy-score
https://doi.org/10.1371/journal.pcbi.1009305


(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J (mTmG, Jackson Laboratory, Stock No. 007676).

Both mice have C57BL/6J congenic background. All animals were maintained compliant to

protocols by the Johns Hopkins Animal Care and Use Committee.

CM isolation. For isolation of CMs from e14-p4 timepoints, we used the neonatal cardio-

myocyte isolation kit from Miltenyi Biotec in conjunction with the gentleMACS Dissociator.

For later timepoints, we performed Langendorff isolation of CMs. We prepared the following

buffers:

• Perfusion buffer: 120 mM NaCl, 5.4 mM KCl, 1.2 mM NaH2PO4, 20 mM NaHCO3, 5.5 mM

glucose, 5 mM BDM, 5 mM Taurine, and 1 mM MgCl2, adjusted to pH 7.4

• Digestion buffer: 40 mL Perfusion buffer plus 35.8 mg Collagenase Type II (Worthington

CLS-2), 3 mg Protease (Sigma P5147)

• Tyrode’s buffer: 140 mM NaCl, 5 mM KCl, 10 mM HEPES, 5.5 mM glucose, and 1 mM

MgCl2, adjusted to pH 7.4

We used a horizontal (i.e. non-hanging) Langendorff apparatus with a chamber filled with

perfusion buffer. To perform isolation, we first performed isofluorane anaesthesia on non-hep-

arinized mice. Mice were observed until clearly anaesthetized and unresponsive to toe pinch,

and subsequently euthanized by cervical dislocation. The heart was then rapidly excised from

the chest and cannulated to the Langendorff apparatus. Flow time and rate of flow were depen-

dent on the age of the mouse and were typically judged based on completeness of digestion to

touch. Subsequently, the left ventricular free wall was excised and minced. We filtered isolated

cells through a 100 μM screen to eliminate large tissue chunks, spun down at 800 RPM for 1

minute (Eppendorf centrifuge 5702), and resuspended cells in 10 mL Tyrode’s buffer.

LP-FACS. We have detailed our LP-FACS approach previously [32]. We reproduce our

methods here. We utilized a COPAS SELECT instrument (Union Biometrica). The COPAS

SELECT was updated and rebranded as the FP-500, but the protocol here study does not use

the new features and thus the two are functionally indistinguishable. We optimized sorting for

cardiomyocytes by using a sort delay of 8 and sort width of 6. Additionally, we used the follow-

ing fluorescence settings: ext gain 50, green gain 200, yellow gain 200, red gain 255, extension

integral gain 50, green integral gain 200, yellow integral gain 200, red integral gain 255, green

PMT 800, yellow PMT 800, red PMT 1100. Coincidence check was selected to ensure proper

single event sorting. We typically flowed cells between 20–60 events/second. We maintained

cells in Tyrode’s buffer during the sort and sorted them into Tyrode’s buffer. To run the

machine, we used ClearSort Sheath Fluid (Sony, Lot 1218L345).

scRNA-seq library preparation and sequencing. We performed sequencing using the

mcSCRB-seq protocol [63]. The protocol has been described at protocols.io at dx.doi.org/10.

17504/protocols.io.p9kdr4w. Pooled libraries were sequenced on one mid-output lanes of the

Illumina NextSeq500 with 16 base pair barcode read, 8 base pair i7 index read, and 66 base

pair cDNA read design.

Computational analyses

All analyses performed in the paper were done in R; code to reproduce the figures can be

found at our Github (https://github.com/skannan4/cm-entropy-score). Dataset characteristics

are presented in S1 and S2 Tables, and details of each individual dataset are described in the

S1 Text. Dimensionality reduction as well as dataset integration for Fig 1 was done using Mon-

ocle 3. Differential gene expression analysis for Fig 5 was done using Monocle 2, replacing
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Monocle 2’s generated pseudotime with entropy score or pseudotime from other methods as

appropriate.

Supporting information

S1 Fig. Correction of mitochondrial pseudogenes enables consistent entropy score mea-

surements across mapping/counting pipelines. A. Entropy scores for the maturation refer-

ence dataset mapped by zUMIs, kallisto|bustools with the full reference, and kallisto|bustools

with the CellRanger reference. Pre- and post-correction scores are shown. B. As in A, showing

mitochondrial proportions. C. Entropy scores for the 10x Chromium heart dataset mapped by

zUMIs, kallisto|bustools with the full reference, kallisto|bustools with the CellRanger reference,

and CellRanger. D. As in C, showing mitochondrial proportions.

(TIFF)

S2 Fig. Ribosomal protein-coding genes are expressed in a sequencing protocol-specific

manner. A. Proportion of ribosomal protein coding genes in mouse in vivo datasets, grouped

by timepoint. B. Proportion of ribosomal protein coding genes in mouse in vivo datasets,

grouped by library preparation method. 10x v1-v3 protocols have been coalesced together for

the purposes of this figure.

(TIFF)

S3 Fig. Entropy score is robust across a range of sequencing depths. For each of four data-

sets, we performed subsampling and computed the entropy score as well as accuracy (calcu-

lated as deviation from baseline entropy score). At each stage, we included only cells with

genes> 1000, and subsampled only to a depth where the median number of genes

remained > 1000. Data is shown for A-B. Dueck et al. C-D. Jia et al. at e9.5. E-F. First 100 cells

from Hill et al. at e10.5. G-H. First 100 cells from Duan et al.

(TIFF)

S4 Fig. Poor quality single cells can be identified and removed with normalized depth and

top 5 gene percentage metrics. A. Normalized depth QC metric for all datasets. Red line indi-

cates the threshold of −0.5. B. Normalized top 5 gene percentage metric for all datasets. Red

line indicates the threshold of 1.3.

(TIFF)

S5 Fig. SingleCellNet identifies single cells with CM signature. Cells are labeled based on

whether their highest classification was for “cardiac muscle” or another celltype. A. For human

in vivo datasets. B. For human in vitro directed differentiation datasets.

(TIFF)

S6 Fig. Entropy score enables comparison of maturation status of CMs from scRNA-seq

datasets with diverse characteristics. This figure corresponds to Fig 2B, but with boxplots

coloured by A. sequencing protocol and B. isolation method.

(TIFF)

S7 Fig. Entropy score is consistent for UMI datasets pre- and post-UMI collapsing. A.

Ratio of entropy score for UMI datasets computed prior to vs. after UMI collapsing.

(TIFF)

S8 Fig. Entropy score correlates modestly with previous trajectory inference methods. We

reconstructed trajectories of our maturation reference dataset using A-B. Monocle 2, C-D.

Slingshot, and E-F. SCORPIUS.

(TIFF)
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S9 Fig. Entropy score captures CM maturation-related gene expression trends in one-time-

point datasets. Gene trends across entropy score, as in Fig 3C, are plotted for A. 10x Chro-

mium heart dataset, B. Goodyer et al., and C. Duan et al.

(TIFF)

S1 Table. In vivo datasets used for this study

(TIFF)

S2 Table. PSC-CM and iCM datasets used for this study

(TIFF)

S1 Text. Appendix for all datasets analyzed in this study

(DOCX)
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