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While pluripotent stem cell-derived cardiomyocytes (PSC-CMs) offer
tremendous potential for a range of clinical applications, their use
has been constrained by the failure to mature these cells to a fully
adult-like phenotype. Extensive efforts are currently underway with
the goal to mature PSC-CMs. However, comprehensive metrics to
benchmark the maturation status and trajectory of PSC-CMs have
not been established. Here, we developed a novel approach to
quantify CM maturation through single cell transcriptomic entropy.
We found that transcriptomic entropy is robust across datasets
regardless of differences in isolation protocols, library preparation
methods, and other potential batch effects. We analyzed over 40
single cell RNA-sequencing (scRNA-seq) datasets and over 45,000
CMs to establish a cross-study, cross-species reference of CM
maturation based on transcriptomic entropy. We subsequently
computed the maturation status of PSC-CMs by direct comparison
to in vivo development. Our study presents a robust, interpretable,
and easy-to-use metric for quantifying CM maturation.
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The development of robust protocols for generation of
cardiomyocytes (CMs) from pluripotent stem cells (PSCs)

has represented a huge advance in cardiovascular medicine
over the past two decades. Adult CMs are notably non-
proliferative and difficult to obtain from patients, and thus
deriving PSC-CMs is currently the most viable method for
generating large quantities of human CMs (1). PSC-CMs
have numerous promised applications towards cardiac health,
including regenerative medicine, drug efficacy and toxicity
screening, and in vitro disease modeling (2–6). However,
clinical application of PSC-CMs has been limited thus far
due to the failure of these cells to mature to a fully adult-like
phenotype ex vivo. During the course of normal development,
CMs undergo a lengthy maturation process characterized by
adaptive changes to structure, function, gene expression, and
metabolism (7). By contrast, PSC-CMs resemble embryonic
CMs, even following extended culture (8). Thus, solving the
so-called “maturation problem” in PSC-CMs is a major target
for cardiovascular research.

To date, numerous ex vivo approaches have been proposed
to improve PSC-CM maturation. These approaches have
included cytokine, growth factor, and hormone cocktails, co-
culture with other cells, induction of physical stimuli (e.g.
mechanical stretch, electrical stimulation), and construction
of biomaterial-based three dimensional tissues, typically with
the goal of recapitulating important aspects the native cardiac
milieu (8–11). Benchmarking the efficacy of these interventions
has been challenging, however, due to a lack of established
standards for quantifying CM maturation (8). In particular,
direct comparisons between PSC-CMs and mature adult CMs
are limited both due to the difficulty of culturing adult CMs

long term and the challenge in performing many conventional
CM functional assays (e.g. sarcomeric shortening) with PSC-
CMs (12, 13). Correspondingly, most interventions to improve
PSC-CM maturation are compared against an in vitro control
or at best one discrete (usually neonatal) in vivo timepoint,
rather than across the continuous spectrum of in vivo CM
maturation. Several groups have aimed to use -omics data to
compare PSC-CMs to in vivo CMs (14–16). However, these
approaches have been limited to bulk samples, which precludes
their use for highly heterogeneous PSC-CM populations.

scRNA-seq has emerged as a powerful tool for measuring
the transcriptomes of large numbers of single cells. The
development of new isolation protocols has facilitated the
use of scRNA-seq for cardiac tissues (17, 18), making it an
intriguing candidate for new metrics of PSC-CM maturation.
Unfortunately, differences in isolation protocols, library
preparation methods, and sequencing machines, among other
factors, can imbue scRNA-seq data with batch effects that
are difficult to deconvolve (19, 20). In turn, this makes it
difficult to directly compare expression of individual genes
across datasets. While batch correction algorithms have been
developed (21), they are primarily designed for correcting or
integrating datasets with multiple well-defined cell types with
significantly different gene expression patterns rather than
one continuously evolving cell type. Thus, an optimal scRNA-
seq-based metric of CM maturation must be robust to batch
effects and facilitate direct comparison of maturation status
independent of the method used to generate the data.

Here, we develop an approach based on quantifying
gene distributions to assess CM maturation. Our approach
is based on the generally-observed phenomenon that less
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differentiated cells are typically more promiscuous in their
expression of signaling pathways, leading to a diverse gene
expression profile. However, as they differentiate, they
prune unnecessary signaling pathways and hone in on a
relatively narrow gene expression profile (22). This observation
underlies our understanding of cellular differentiation (23), and
has been leveraged in several previous approaches to study
differentiation of stem cells to progenitors and subsequently
to committed lineages (24–28). We apply this principle to
study the maturation of committed CMs by developing a
metric based on a modification of the Shannon entropy of gene
expression in scRNA-seq data. We find that our transcriptomic
entropy-based metric not only adequately stages single CMs,
but that transcriptomic entropy scores are consistent across
datasets regardless of potentially confounding batch effects.
Using datasets from the literature, we perform a meta-analysis
of CM maturation based on transcriptomic entropy. We
subsequently demonstrate the use of our approach to infer the
maturation status of PSC-CMs, with the goal of establishing
transcriptomic entropy as a viable metric of CM maturation.

Results

Shannon entropy of single cell gene expression decreases
over CM maturation. Following terminal differentiation, CMs
undergo a lengthy maturation process characterized by gradual
and unidirectional changes in gene expression (15). Based on
previous findings, we proposed a model for transcriptional

maturation of CMs analogous to cellular differentiation
(Figure 1A). In this model, nascent cardiomyocytes express
a broad gene expression profile. However, as they mature, they
slowly reduce expression of immature gene pathways (e.g. cell
cycle) while upregulating genes required for mature function
(e.g. sarcomere, calcium handling, oxidative phosphorylation).
These gradual changes in gene distribution can be quantified by
established diversity metrics such as the well-known Shannon
entropy. In our model, immature myocytes will present with
high transcriptomic entropy, which subsequently decreases in
a continuous manner over the course of maturation.

To test the validity of this model, we generated an scRNA-
seq library of ∼1,000 CMs from 12 timepoints over the course of
maturation. Sequencing of postnatal CMs, which are large and
fragile, has been previously limited (29). Recently, however,
we developed a method to isolate healthy adult CMs to
generate high quality scRNA-seq libraries using large-particle
fluorescence-activated cell sorting (LP-FACS) (18). We used
this approach to isolate CMs from Myh6-Cre; mTmG (aMHC-
cre x mTmG) mice, in which cells expressing cardiac-specific
myosin heavy chain are readily separated by GFP expression
(Figure 1B). Our maturation reference particularly sampled
cells within the first three weeks postnatally, as this period
may be critically relevant to the maturation process but is
underrepresented in existing CM scRNA-seq datasets.

We next computed the Shannon entropy S on the unique
molecular identifier (UMI) counts of our maturation reference

Fig. 1. Shannon entropy of the single cell transcriptome shows a characteristic decrease over CM maturation. A. Our model for changes in gene distribution over CM
maturation. As CMs undergo the maturation process, they transition from a broad gene distribution (characterised by high entropy) to a more narrow distribution (characterised
by low entropy). B. Mouse model used to generate perinatal maturation reference scRNA-seq library. In the aMHC-cre x mTmG mouse, CMs are labeled by GFP. C. Shannon
Entropy S computed for each timepoint in the maturation reference dataset. D. Smoothed density estimates for genes expressed at 0-5000 counts per million (CPM) for each
timepoint in the maturation reference dataset.
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Fig. 2. Entropy score enables cross-study and cross-species comparison of CM maturation status. A. Workflow for computing entropy score from high quality
scRNA-seq datasets. Details are further discussed in Supplementary Notes 1-5. B. Entropy score for mouse and human in vivo CMs taken from publicly available datasets.

(Figure 1C). Entropy gradually decreased from e14 to p56,
with a notable shift from p4 to p8, thereby supporting
our hypothesized entropy model. We additionally plotted
the averaged gene distributions for each timepoint (Figure
1D). As expected, earlier timepoints showed a more broad
distribution compared to later timepoints. These results
supported the use of Shannon entropy to quantify CM
maturation status from scRNA-seq data.

Entropy score enables cross-study inference of maturation
status. Given the correspondence between Shannon entropy
and CM maturation status, we next sought to determine
whether we could extend our transcriptomic entropy model
to many CM scRNA-seq datasets generated across multiple
labs. However, several technical challenges prevented accurate
cross-study comparison of Shannon entropy computed on raw,
unfiltered datasets. Therefore, we developed a workflow for
addressing major technical confounding variables to enabling
cross-study comparisons (Figure 2A). The rationale for each
step is discussed in Figures S1-S5 and Supplementary
Notes 1-5. Briefly, our workflow first corrected reads
incorrectly mapped to mitochondrial pseudogenes, an artefact
of certain genomic read mapping/counting pipelines (Figure
S1, Supplementary Note 1). We removed ribosomal
protein coding genes, as their expression level may be biased by
certain sequencing protocols (Figure S2, Supplementary

Note 2). We then selected the top 1000 highest expressed
genes in each cell. This step is particularly important as
it controls for sensitivity differences both between cells and
across datasets. Poor quality cells were filtered using two
metrics - the percentage of counts in the 5 highest expressed
genes (a potential read-out of cell lysis) and unusually low
depth (Figure S3, Supplementary Note 3). Further issues
regarding dataset quality are addressed in Figure S4 and
Supplementary Note 4. We lastly identified cells with CM
gene expression signatures using SingleCellNet (30) (Figure
S5, Supplementary Note 5). The output of our workflow
is the computed Shannon entropy on the filtered datasets,
which we refer to as entropy score through the remainder
of the manuscript. Entropy score is robust to multiple
commonly used read-mapping/counting pipelines (Figure
S1), sequencing protocols (Figure S6), and sequencing
depths, with the exception of very low-depth Drop-seq datasets
(Figure S7, Supplementary Note 6).

To test the utility of entropy score in quantifying CM
maturation, we identified publicly available scRNA-seq
datasets containing CMs isolated in vivo (Supplementary
Table 1). Our meta-analysis included 32 mouse datasets and
5 human datasets, and after filtration contained 35,378 CMs
spanning numerous timepoints across the range of development.
Additionally, the collected datasets represented significant
diversity in terms of isolation methods, sequencing protocols,
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mapping/counting pipelines, and datatypes (including reads
from full-length scRNAseq protocols, 3’ counts from UMI
protocols prior to UMI collapsing, and UMIs). Entropy score
gradually decreased over developmental time, as hypothesized
by our model (Figure 2B, Figure S8). Notably, despite the
marked heterogeneity of dataset characteristics, entropy score
was consistent at similar timepoints across multiple datasets.
This was true even for datasets whose batch effects were
difficult to resolve through integration methods (Figure S9).
In particular, entropy score showed remarkable concordance
between datasets featuring different datatypes. For example,
using four UMI-based datasets generated by our group, we
found that the ratio of entropy score computed prior to versus
after UMI collapsing was 1.02 (Figure S10).

In the mouse in vivo datasets, entropic changes occurred
in three broad phases (Figure 2B). In the embryonic phase
(∼e7.75-e16.5), entropy score decreased at a relatively slow
rate. Upon initiation of the perinatal phase at e16.5, entropy
score decreased more rapidly before converging onto a relatively
mature adult-like phase at p21. These changes correspond well
to previous literature about the dynamics of CM maturation,
in particular regarding the perinatal maturation window (7).

We were additionally curious about the efficacy of entropy
score to capture the maturation status of human CMs. We
found that there was good concordance in entropy score
between stage-matched mouse and human tissues (Figure
2B). In particular, fetal tissues (ranging from embryonic week
5 to embryonic week 22) corresponded to ∼e13.5-e14.5 in mice,
while adult human CMs were comparable to adult mouse CMs.
We did observe that one dataset (Sahara et al.) showed a
notably lower entropy score at embryonic weeks 7-8, though

we suspect this may have to do with dataset quality issues
(Supplementary Note 4). Taken as a whole, however, these
results support the use of entropy score as a cross-study, cross-
species metric of CM maturation.

Entropy score recapitulates gene expression trends in
CM maturation. We next tested whether entropy score
computationally ordered single CMs based on their progression
along the maturation process, akin to so-called trajectory
inference or pseudotime analysis methods. We selected
three well-known trajectory inference methods - Monocle 2,
Slingshot, and SCORPIUS - based on their performance in
recent benchmarking studies, particularly with reconstructing
unidirectional topologies (31). We then performed trajectory
inference with our maturation reference dataset and
compared the resultant pseudotimes with entropy score.
Additionally, we identified genes differentially expressed
over pseudotime/entropy score for each method respectively.
Entropy score correlated only moderately with pseudotimes for
the three methods (Figure 3A, Figure S11). However, there
was notable overlap in identified differentially expressed genes
(Figure 3B). In particular, ∼93.6% of genes identified as
differentially expressed over entropy score were also identified
by at least one other method, and ∼81.5% were identified
as differentially expressed by all methods. Moreover, when
treated as a pseudotime metric, entropy score accurately
recapitulated known CM maturation gene expression trends
(Figure 3C). We further tested entropy score as a pseudotime
metric in datasets composed of only one biological timepoint
but a range of entropy scores. Intriguingly, gene expression
trends across entropy score in these one-timepoint datasets

Fig. 3. Entropy score functions as a pseudotime score for CM maturation. A. Pearson correlation between entropy score and calculated pseudotimes for our maturation
reference dataset for three trajectory inference methods: Monocle 2, Slingshot, and SCORPIUS. B. Venn diagram showing overlap in identified differentially expressed
genes between entropy score and trajectory inference methods. Differentially expressed genes were identified by fitting generalized additive models to gene trends over
the corresponding pseudotime in Monocle 2, and selecting genes with adjusted p-value < 0.05. C. Gene expression trends over entropy score for genes involved in CM
maturation, including sarcomeric, cell cycle, metabolism, and calcium handling genes.
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Fig. 4. Entropy score quantifies maturation status of PSC-CMs and iCMs. A. Comparison in entropy score between human in vivo CMs and human PSC-CMs. Left side
of figure reproduced from Figure 2B. B. Comparison in entropy between mouse in vivo CMs and mouse iCMs. Left side of figure reproduced from Figure 2B. C. Entropy score
for three reprogramming pathways - a canonical Tnnt2+ iCM pathway and two alternative pathways (Ccnb1+ and Mmp3+).

largely matched the trends observed in our maturation
reference dataset (Figure S12). These results suggest that
entropy score can effectively reconstruct the CM maturation
trajectory as it occurs heterogeneously at the single cell
level, and can accurate quantify single CM maturation status
regardless of the biological timepoint of the sample.

Human PSC-CMs do not mature beyond embryonic stage.
Having validated entropy score as a metric of CM maturation
in vivo, we next tested the entropy score of PSC-CMs from
publicly available datasets (Supplementary Table 2). We
identified 5 datasets of directed differentiation of human
induced PSCs to CMs, and analyzed 6,397 cells between
D(ay)9 and D60 of differentiation post-filtering. Though

there was some variation from study to study (perhaps
due to line-to-line differences or variations in differentiation
protocol), there was modest decrease in entropy score over
the course of differentiation (Figure 4A). However, no
study generated CMs with entropy score lower than human
fetal tissues, confirming the immature nature of PSC-CMs.
Moreover, there was limited change in entropy score between
D45 and D60 PSC-CMs, suggestive of maturation arrest.
Interestingly, the entropy score of these later timepoint PSC-
CMs corresponded to the initiation of the perinatal phase of
mouse CM maturation in vivo. This observation may point to
dysregulation of the endogenous perinatal maturation program
during in vitro directed differentiation as a cause of poor PSC-
CM maturation status, and merits further investigation.
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Reprogrammed CMs present with embryonic-like maturation
status. In addition to directed differentiation of PSCs, another
approach that has been explored to generate CMs ex vivo is
direct reprogramming of fibroblasts to CM-like cells (iCMs) by
transcription factor, microRNA, and cytokine cocktails (32).
We used entropy score to analyze a dataset of reprogramming
of mouse neonatal fibroblasts to iCMs by overexpression of
Gata4, Mef2c, and Tbx5. Focusing only on cells with CM-like
signature, we found that entropy score showed limited change
between D3 and D14 of reprogramming (Figure 4B). iCMs
remained at a mid-embryonic stage of maturation, comparable
to e13.5-e14.5 in mouse in vivo CMs. Moreover, compared
to PSC-CMs at the same timepoint of differentiation, iCMs
displayed higher entropy. This result matches earlier findings
that direct reprogramming less effectively recapitulates native
gene regulatory networks compared to directed differentiation
(33).

We further explored change in entropy score across
multiple reprogramming pathways. The authors of the
dataset identified a branching reprogramming trajectory (34).
Reprogrammed cells entered either a canonical iCM route
(e.g. Tnni3+) or two alternative pathways - one characterised
by activation of Mmp3 and another marked by cell cycle
progression (e.g. Ccnb1+). Using the authors’ annotations,
we classified all cells in the dataset (including those without a
CM signature) into one of these three pathways and assessed
the entropy score for cells in each pathway (Figure 4C).
At D1 of reprogramming, cells in all three pathways show
similar entropy score. However, from D1 to D3, cells in the
canonical iCM pathway show more notable decrease in entropy
score, and indeed remain at a lower entropy score than cells
in other pathways. Thus, while iCMs still present with a
notably immature status compared to in vivo, they display
some improvement in maturation status compared to cells
arrested in alternative reprogramming pathways.

Discussion

Here, we present the use of transcriptomic entropy score
for quantifying CM maturation at the single cell level.
Our approach builds on the well-known Shannon entropy
to generate a metric of CM maturation from scRNA-seq
data that is robust to a range of sequencing protocols and
potential batch effects. In particular, entropy score enables
direct benchmarking of in vitro PSC-CM maturation against
their in vivo counterparts. This is particularly important
because endogenous CM development is the gold standard
for instructing PSC-CM maturation. Correspondingly, we
believe that perturbations to improve PSC-CM maturation
must be compared against this gold standard rather than
an in vitro control. Our newly developed entropy score
enables comparison of PSC-CMs against the full trajectory
of endogenous CM maturation. Entropy score can thus be
used to better assess PSC-CM maturation methodologies,
and guide development of tissues that better recapitulate the
adult CM phenotype. It should be noted, however, that we
do not see entropy score as the end-all for CM maturation
quantification. In addition to potential discrepancies between
transcript and protein level expression (35), the mature CM
phenotype encompasses numerous functional parameters that
may be only partially captured at the transcriptomic level. We
envision entropy score as complementing existing functional

assays to advance a more complete assessment of single CM
maturation status.

Through meta-analysis of over 40 scRNA-seq datasets of
CMs, we were able to gain some insights into the dynamics of
CM maturation. In particular, we were interested to note
the existence of a perinatal phase of maturation in vivo,
initiating at approximately e16.5-e18.5, during which CM
entropy score rapidly decreased. Entropy score continued to
decrease until approximately ∼3-4 weeks postnatally. We
previously hypothesized the existence of a critical perinatal
window for CM maturation, and postulated that disruption
of this window in vitro leads to maturation arrest (7). The
significant decrease in entropy observed in our study supports
the perinatal window hypothesis. Moreover, late-stage PSC-
CMs remained arrested at an entropy score similar to those
of e16.5 CMs in vivo. To date, mechanistic understanding of
PSC-CM maturation arrest has been limited, but may involve
progressive disruption of cardiac gene regulatory networks
(15). Our results suggest that increased focus should be placed
on trying to understand regulators of perinatal maturation
in vivo, and determining discrepancies in activity of these
regulators in vitro.

In this study, we found that entropy score could be
applied to scRNA-seq datasets generated from a wide range
of protocols. Excluding the quality control steps, entropy
score is computed from information in one cell at a time,
independent of other cells or datasets. Nevertheless, entropy
score shows strong concordance with CM maturation status
in a comparable manner across dataset. This is particular
novel as, thus far, direct comparisons across studies has been
limited by confounding batch effects. Moreover, current batch
correction algorithms may be poorly suited to integration
of datasets along a continuous trajectory. For example,
anecdotally, we found that several popular batch correction
algorithms failed to correctly coalesce CMs from similar
timepoints even when handling only two datasets. Moreover,
scaling batch correction algorithms to many datasets may be
complex and computationally intensive. By contrast, entropy
score has limited computational demands and can scale easily
to allow for comparison of many datasets.

We were particularly intrigued to note the comparability of
entropy scores across datasets with entirely different datatypes
(e.g. reads, UMIs). For example, it is well known that PCR
amplification in scRNA-seq protocols can lead to biases (36),
which was one of the motivations for the development of
UMIs. However, entropy scores were comparable for UMI
datasets prior to and after collapsing UMIs. Likewise, datasets
generated from full-length protocols did not display notable
biases in entropy score. This observation may have been
incidental to the datasets we studied - for example, high quality
datasets may have presented with sufficiently low amplification
bias to enable comparison. It is possible that entropy score is
less robust to more extreme cases of amplification bias. We
do not believe our finding precludes the use of best practices
for scRNA-seq protocols, including the use of UMIs for many
experimental designs. Nevertheless, we were encouraged that
entropy score could be used to facilitate cross-comparison
between otherwise incompatible datatypes.

One technical limitation of entropy score was its poor
performance with Drop-seq datasets. We consistently found
that Drop-seq datasets presented with higher entropy than
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data generated at similar timepoints through other protocols.
This may be a consequence of depth; the Drop-seq datasets
that we tested were the lowest depth studies tested and
below our identified optimal depth threshold. However, given
the increasing prevalence of other high-quality droplet-based
protocols (in particular, 10x Chromium), we believe this is
not a major limiting factor to the use of entropy score. We
additionally did not test single nuclear RNA-seq datasets, both
due to concerns of depth and because we expected that the
gene distribution would be inherently different from whole
cell studies (37). Nevertheless, the emergence of methods for
isolation of whole adult CMs in mouse and human (17, 18, 38)
may reduce the future need for nuclear RNA-seq.

At the single cell level, CM maturation proceeds
heterogeneously along a unidirectional trajectory (39). We
were therefore curious to know the extent to which entropy
score could capture single cell positioning along this trajectory,
in effect functioning as a pseudotime metric. Entropy score
only modestly correlated with other established pseudotime
methods, though all methods recovered similar differentially
expressed genes. These discrepancies may be due to
transcriptomic noise in single cell data. However, it should
be emphasized that entropy score works in a fundamentally
different manner than many trajectory inference methods.
Most trajectory inference methods utilize some type of
dimensionality reduction step prior to curve fitting. By
contrast, outside of the subselection of highly expressed
genes, entropy score uses no dimensionality reduction
step. Moreover, entropy score makes no assumptions
about relationships between cells – all relevant information
is calculated independently for each cell. Despite being
agnostic to cell-cell relationships, entropy score accurately
captures CM maturation expression trends. Commonly used
dimensionality reduction methods have been shown to distort
local neighbourhoods and affect trajectory reconstruction (40),
and thus entropy score may more optimally capture single CM
dynamics in maturation.

Entropy score has several important antecedents that
must be acknowledged. Our work is similar to StemID
(28), which uses Shannon entropy to assign progenitor state
within a trajectory. We extend this usage with several gene
filtering steps to better facilitate cross-study comparison.
Shannon entropy is also utilized in SLICE (26), which
computes entropy based on functional annotations of genes,
and SCENT (24), which computes entropy within a protein-
protein interaction network. Both approaches are powerful for
constructing trajectories for differentiating cells. However,
unlike differentiation, CM maturation is characterized by
continuous rather than step-wise or switch-like changes. For
this purpose, an entropy score built directly on gene expression
levels is both simpler to compute and more appropriate. Lastly,
our work is similar conceptually to CytoTRACE (27), which
leverages gene diversity to order cells by differentiation status.
Directly comparing number of genes expressed by each cell is
confounded by cross-study differences in depth and sensitivity,
however. CytoTRACE addresses this by using a smoothing
step within dataset. However, this limits its use for datasets
with few cells or representing fewer maturation states. By
contrast, outside of quality filtering, entropy score performs
computations on each cell independently, extending its utility
to more datasets.

Our focus in this manuscript was towards the quantification
of PSC-CM maturation status. In theory, however, our work
is easily extensible to other biological contexts. In particular,
questions of maturation status have been raised with regards
to other PSC-derived tissues, such as hepatocytes (41) and
neurons (42). We expect that application of entropy score to
these systems will improve assessment of PSC-derived tissue
quality and enable development of improved tissues for clinical
use.

Materials and Methods

All methods, including wet lab and computational methods, can
be found in the Supplementary Information. Raw data for the
maturation reference can be found on GEO at GSE147807. Code to
generate figures in this manuscript as well as the counts tables for
the datasets analyzed in this manuscript can be found on Github
at https://github.com/skannan4/cm-entropy-score.
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Supporting Information Text

The purpose of these supplementary notes is to discuss critical features that went into the design of our entropy score metric.
While the general principles of entropy score are straightforward, we utilized several gene and cell filtration steps to optimize
cross-study comparison. We outline our decisions here and provide rationale to support our approach.

Shannon entropy has had long-standing applications in developmental biology as well as transcriptional analysis (1, 2). A
standard form for Shannon entropy S is:

S = −
∑

i

Pi log(Pi)

where Pi represents individual probabilities for events of interest. Here, we define Pi as the probability of selecting a given gene
i in a cell. From scRNA-seq data, this can be computed by simply dividing the number of counts for gene i by all of the gene
counts in a given cell. For our entropy score, we similarly use Shannon entropy, except after subsetting the top 1000 highest
expressed genes to enable sensitivity control.

Supplementary Note 1: Handling multiple mapping/counting pipelines. There are a large number of pipelines for generating
count matrices from raw RNA-seq data. In particular, there are numerous approaches for mapping raw RNA-seq reads to
either genome or transcriptome, and subsequently counting mapped reads. While there have been benchmarking studies to
compare pipelines (3), there is still no consensus on optimal approaches for generating count matrices. One of the goals of our
study was to ensure that entropy score could be broadly and easily usable by many users with a range of data generation
methods. Where possible we aimed to use count matrices generated by the original manuscript authors regardless of pipeline
used, though in some cases we remapped or recounted as necessary (see Appendix for more details).

One problem that was regularly observed was the incorrect mismapping of mitochondrial reads to pseudogenes. In mice,
fragments of the mitochondrial genome are present as pseudogenes in the nuclear genome (termed nuclear mitochondrial
insertion sequences (4)). These fragments often show identical or near-identical sequences to mitochondrial genes, and thus reads
are often multi-mapped between canonical mitochondrial genes and pseudogenes. Multi-mapping reads are handled differently
by different pipelines. However, in pipelines counting multi-mapping reads, we often found high numbers of mitochondrial
pseudogenes - for example, Gm29216, Gm28437, Gm28661, Gm13340, and others. This issue was particularly problematic
for CMs, as they naturally express high amounts of mitochondrial genes (5). Accurate quantification of these genes was thus
necessary for cross-study accuracy of entropy score.

As our goal was to enable entropy score to be widely usable across many protocols, we included an approximate pseudogene
correction in our pipeline. We made the assumption that CMs do not express mitochondrial pseudogenes to any appreciable
extent, and thus all identified pseudogenes could be converted to the corresponding mitochondrial gene. We identified
cross-mappings between pseudogenes and canonical genes, and subsequently removed all pseudogene counts and added them
to the corresponding canonical mitochondrial genes. It must be noted that this approach is an approximation. For example,
for UMI datasets, if UMI collapsing is done after gene identification, this method may overestimate mitochondrial counts.
Additionally, we only focused on correcting mitochondrial pseudogene mismappings, as these most affected our data. However,
it is possible that other genes are also mismapped.

To test the efficacy of our pseudogene correction, we tested the entropy score and well as mitochondrial gene percentages
before and after correction for several mapping/counting methods (Figure S1). As a genomic method, we used the zUMIs
pipeline (6), which uses STAR for mapping followed by FeatureCounts for counting. In this method, multimapping counts
are effectively randomly allocated between mitochondrial reads and pseudogenes. As a transcriptomic method, we utilized
kallisto|bustools (7). We used kallisto|bustools with two indices – a full index containing all mouse cDNAs from ENSEMBL
(kb.full), and an index containing only protein coding, lincRNAs, and antisense RNAs analogous to the Cell Ranger index
(kb.cellranger). Lastly, we also used Cell Ranger, a part of the 10x Genomics pipeline. Cell Ranger first maps reads to the
genome, and subsequently takes mapped reads and remaps against a transcriptome. However, as stated above, the Cell Ranger
index does not contain pseudogenes, and thus does not feature mitochondrial read mismapping.

We tested zUMIs, kb.full, and kb.cellranger for our maturation reference data pre- and post-correction (Figure S1A,
S1B), as well as the 10x Chromium dataset with zUMIs, kb.full, kb.cellranger, and Cell Ranger (Figure S1C, S1D). As
expected, prior to correction, zUMIs and kb.full produced datasets with lower mitochondrial read percentage and therefore
higher entropy. However, post-correction, these datasets showed entropy and mitochondrial read percentages that were nearly
identical to kb.cellranger and Cell Ranger. Thus, our recommendation to users is to either use Cell Ranger or kallisto|bustools
with a Cell Ranger index. In the case that this is not possible, however, datasets that include multi-mapping reads will be
sufficiently corrected for use in our entropy score.

Supplementary Note 2: Gene filtering. By default, entropy score only uses genes with gene biotype “protein coding,” “antisense,”
or “lncRNAs,” so as to focus on the key players of the transcriptome. We additionally considered ribosomal protein-coding
genes (e.g. starting with “Rps” or “Rpl” in mouse and “RPS” or “RPL” in human). These genes are often discarded or ignored
during analysis. We plotted the expression of these genes in mouse in vivo datasets over time (Figure S2A) and found no
clear maturation-related effect in terms of expression of these genes. However, there were significant protocol-related biases in
terms of expression of these genes (Figure S2B). In particular, 10x Chromium and STRT-seq datasets appeared to have
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Fig. S1. Correction of mitochondrial pseudogenes enables consistent entropy score measurements across mapping/counting pipelines. A. Entropy scores for the
maturation reference dataset mapped by zUMIs, kallisto|bustools with the full reference, and kallisto|bustools with the CellRanger reference. Pre- and post-correction scores are
shown. B. As in A, showing mitochondrial proportions. Figure continues on next page.

Suraj Kannan, Michael Farid, Brian L. Lin, Matthew Miyamoto, Chulan Kwon 3 of 22

.CC-BY-NC 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.04.02.022632doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.02.022632
http://creativecommons.org/licenses/by-nc/4.0/


Fig. S1. (Continued from previous page.) C. Entropy scores for the 10x Chromium heart dataset mapped by zUMIs, kallisto|bustools with the full reference, kallisto|bustools
with the CellRanger reference, and CellRanger. D. As in C, showing mitochondrial proportions.

systematically higher percentages of ribosomal protein-coding genes than other protocols. This observation anecdotally matches
observations made by others and likely indicates a protocol bias, though we are unsure about the reason this occurs. There was
no compelling reason for believing that the expression level of these genes related to CM maturation status; however, their
expression skewed gene distributions in certain datasets. Therefore, we removed all ribosomal protein-coding genes prior to
computation of entropy score.

Supplementary Note 3: Quality control of poor-quality cells. Quality control is an essential step in all scRNA-seq protocols
(8–10). Protocols will inevitably generate cells that have been lysed or damaged in some way, making them unsuitable for
downstream analysis. A range of metrics have been used to assess poor quality cells. However, there are no set standards
for indication of poor quality. There are technical and biological reasons for this limitation. For example, a metric such as
mitochondrial read percentage (often used to mark cell lysis), will be dependent not only on tissue type (11) (particularly with
regards to CMs), but also on biological timepoint. Likewise, a metric such as numbers of counts/genes expressed is inherently
dataset specific - 5000 counts may be the median for a high quality cell in a low-depth study, but may indicate a lysed cell in a
high-depth study. Thus, quality control is often done in a study-to-study manner.

As our study involves a meta-analysis of many independently generated datasets, we aimed to establish a standardized
approach for quality control. This had the dual benefits of ensuring at least a minimal level of comparability while limiting the
need to determine individual thresholds for each dataset. We focused on two primary metrics of quality control - cell depth and
percentage of reads going to the top 5 highest expressed genes in each cell. We selected these metrics because we observed that
they most affected quantification of entropy score. As an example, we plotted the Churko et al. data (Figure S3A, S3B).
Both low depth and high percentage of top 5 reads (usually, though not always, mitochondrial reads) led to artificially low
entropy score, requiring filtering. We particularly observed large tails of artificially low entropy cells in datasets with many
cells, such as 10x Chromium-generated datasets.

We then defined normalized metrics based on both measurements by dividing the respective measurement by the median of
that measure in that study and in that timepoint. Thus, while comparable cross-study, the metrics could be considered with
respect to potential biological and technical variation. We then set the threshold for the normalized depth metric as > −0.5
(Figure S3C) and the normalized top5 percent metric as < 1.3 (Figure S3D).

There are some caveats to our approach. Firstly, we selected very conservative thresholds. We initially tested several
different thresholds and found that being more conservative could do a better job in eliminating poor quality cells without
dramatically affecting higher quality cells; however, these thresholds are still essentially subjective and may require further
optimization. Secondly, while we aimed to standardize our quality control process, it must be observed that our input data
itself is inconsistent - many of the datasets already had some level of quality control before being input into our pipeline. Given
the biological concordance between entropy score and maturation, we believe that any variations in quality control based on
input data were minimal. Nevertheless, this is an area that will continue to require further discussion and decision-making
from the scRNA-seq community.

Supplementary Note 4: Identifying poor quality datasets. One additional caveat to our approach outlined in Supplementary
Note 3 is the assumption that a dataset is broadly high quality but contains some low quality cells. This assumption is
violated when the entire dataset itself is poor quality. For example, adult CMs are highly difficult to isolate at the single
cell level by a number of classical methods, such as conventional FACS, single cell picking, or microfluidic devices such as
the Fluidigm C1. We have previously shown that these methods can yield poor quality scRNA-seq, where the percentage of
identified mitochondrial reads is far in excess of that in a bulk control (5). However, because such datasets are globally affected,
our outlined quality control approach will incorrectly allow cells to pass.
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Fig. S2. Ribosomal protein-coding genes are expressed in a sequencing protocol-specific manner. A. Proportion of ribosomal protein coding genes in mouse in vivo
datasets, grouped by timepoint. B. Proportion of ribosomal protein coding genes in mouse in vivo datasets, grouped by library preparation method. 10x v1-v3 protocols have
been coalesced together for the purposes of this figure.
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Fig. S3. Poor quality single cells can be identified and removed with normalized depth and top 5 gene percentage metrics. A. Example of unusually low entropy cells
due to low depth in the Churko et al. dataset. B. Example of unusually low entropy cells due to high top 5 gene percentage in the Churko et al. dataset. C. Normalized depth
QC metric for all datasets. Red line indicates the threshold of −0.5. D. Normalized top 5 gene percentage metric for all datasets. Red line indicates the threshold of 1.3.
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To identify such datasets, we used the percentage of mitochondrial reads as a quality control metric. We plotted the
mitochondrial reads across all the mouse in vivo datasets in Figure S4A, highlighting datasets with unusually high mitochondrial
percentage in red. We subsequently discarded these datasets (Figure S4B). The final relationship between timepoint and
mitochondrial reads in mouse in vivo data, subsequent to eliminating low depth datasets (discussed in Supplementary Note
6), is shown in Figure S4C.

Currently, there is no automated approach for easily identifying poor quality datasets. The clear relationship between
timepoint and mitochondrial reads in mouse datasets, as seen in Figure S4C, may help define better approaches in the future.
However, the limited data available for in vivo human cardiac tissues makes it difficult to assess similarly for human CMs.
We thus erred on the side of caution, and tried to avoid eliminating datasets without clear rationale for doing so. In some
cases, we eliminated certain portions of datasets (for example, one patient or tissue region) if they appeared clearly irregular.
However, these decisions were necessarily made on an ad hoc basis. We outlined our rationale for discarding any datasets in
the Appendix, with the hope that transparency could suffice in the current absence of more rigorous dataset disqualification
criteria.

Supplementary Note 5: Identifying CMs. In terms of cell-type filtration, our input datasets were fairly heterogeneous, with
some including only CMs while others were more broad. Thus, we used SingleCellNet (12) to identify and retain only cells
with CM signature. SingleCellNet uses top-scoring pair to enable cross-platform comparisons of test data against a training
dataset to annotate celltypes, and has performed well in benchmarking (13). We used the Tabula Muris (14) as a reference
dataset to test against many celltypes. However, as the Tabula Muris is constructed on adult tissues, we were concerned
that early-stage CMs may be poorly classified. We thus tested the predicted cell annotations from SingleCellNet across our
mouse in vivo datasets. We classified a cell as a CM if its score for “cardiac muscle cell” was higher than the score for any
other celltype. We found that, while prediction scores for CMs increased over time, CMs were identified as early as e7.5,
corresponding appropriately to the onset of cardiomyogenesis (Figure S5A). In human in vivo datasets, CMs were present by
embryonic week 5, which was the earliest timepoint for which we had data (Figure S5B). These results supported the use of
the Tabula Muris reference with SingleCellNet, even for identifying nascent CMs. We lastly tested the use of SingleCellNet
on in vitro directed differentiation datasets. We found that cells with CM-like signature appeared by D5 of differentiation
(Figure S5C), though we focused our analysis on D9 onwards.

Supplementary Note 6: Robustness of entropy score. We aimed to establish entropy score as a metric of CM maturation
that could be effectively used for cross-study comparison. Entropy score must therefore be robust to parameters that will
vary across studies. We demonstrated previously that after mitochondrial pseudogene correction, entropy score is robust to
mapping/counting pipeline (Figure S1, Supplementary Note 1). We consider here the utility of entropy across sequencing
protocols and across a range of sequencing depths.

To test entropy score on multiple sequencing protocols, we used data from the benchmarking of six scRNA-seq protocols
with mouse embryonic stem cells (15). This dataset was optimal for comparison because 1) it utilized one, well-defined celltype;
2) tested a range of protocol types; and 3) sequenced all protocols to high depth, thereby eliminating depth as a confounder. All
of the protocols generated similar entropy scores with the exception of CELseq2 (Figure S6A). However, this may have been
due to an error in the running of this particular protocol, as the CELseq2 samples presented with unusually high mitochondrial
percentage (Figure S6B). The remaining protocols covered a range of characteristics, including plate-based, droplet-based,
and microfluidic approaches, supporting the use of entropy score regardless of sequencing protocol used to generate the data.

We next wished to test entropy score across different depths. The achieved depth of a particular dataset is dependent on
a number of characteristics, including sensitivity of the sequencing protocol, number of cells sequenced, and the choice of
sequencing machine/lane, which may in turn be affected by many experiment-specific considerations (15–17). We selected four
datasets with a range of baseline depths, and performed subsampling to determine a minimum required depth for accurate
entropy quantifications. We defined accuracy based on the deviation from the baseline entropy score, and set a threshold
of 98% accuracy (corresponding ∼0.1 change in entropy score). Entropy score was relatively robust to subsampling, with
98% accuracy being achieved at above ∼2000-4500 counts/cell, depending on the dataset (Figure S7). While this depth was
sufficient for most of our assayed datasets, some very low-depth datasets were affected - in particular, all four Drop-seq datasets
tested had depths ranging from 1500 - 4100 counts/cell. Perhaps relatedly, these Drop-seq datasets often had unusually high
entropy compared to other datasets at the same timepoint. As a particularly striking example, the Drop-seq data from Duan
et al. had a 10% increase in entropy score from the 10x data produced by the same group. While Figure S6A indicates
that high-depth Drop-seq should be comparable to data generated by other protocols, it is likely that low-depth Drop-seq
poorly captures very highly expressed genes. Given these results, we omitted the Drop-seq datasets from further analysis. We
additionally advise users of entropy score to sequence samples to at least 5000 counts per cell.

Other Supplementary Figures. In addition to the supplementary figures discussed above, we include here Figures S8-S11.
Figure S8 shows entropy scores for in vivo datasets as in Figure 2B, but labeled by different characteristics. Figure
S9 shows the attempted integration of several perinatal datasets by Seurat. Figure S10 shows the ratio of entropy scores
computed on four UMI datasets pre- and post-UMI collapsing. Figure S11 shows trajectory inference of our maturation
reference using Monocle 2, Slingshot, and SCORPIUS, as well as the correlation to entropy score for each method. Figure
S12 show gene expression trends across entropy, as in Figure 3C, for three one-timepoint datasets. Further details for each
can be found in the corresponding captions, as well as our publicly available code.
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Fig. S4. Poor quality datasets can be identified on an ad hoc basis with mitochondrial gene proportion. A. Mitochondrial gene proportions in mouse in vivo datasets.
Datasets with unusually high proportions are highlighted in red. B. As in A, but with high mitochondrial proportion datasets removed. C. Mitochondrial proportions for mouse in
vivo datasets included in final analysis (as in B, but with low depth datasets removed).
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Fig. S5. SingleCellNet identifies single cells with CM signature. A. SingleCellNet CM scores for mouse in vivo datasets by timepoint. Cells are labeled based on whether
their highest classification was for “cardiac muscle” or another celltype. B. As above, for human in vivo datasets. C. As above, for human in vitro directed differentiation datasets.
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Fig. S6. Entropy score is consistent across sequencing protocols. A. Entropy score computed for mouse embryonic stem cells for six different library preparation methods
from Ziegenhain et al. For this figure, the SingleCellNet filter was not used. B. Mitochondrial proportions for the above dataset.
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Fig. S7. Entropy score is robust across a range of sequencing depths. For each of four datasets, we performed subsampling and computed the entropy score as well as
accuracy (calculated as deviation from baseline entropy score). At each stage, we included only cells with genes > 1000, and subsampled only to a depth where the median
number of genes remained > 1000. Data is shown for A-B. Dueck et al. C-D. Jia et al. at e9.5. E-F. First 100 cells from Hill et al. at e10.5. G-H. First 100 cells from Duan et al.
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Fig. S8. Entropy score enables comparison of maturation status of CMs from scRNA-seq datasets with diverse characteristics. This figure corresponds to Figure
2B, but with boxplots coloured by A. sequencing protocol and B. isolation method.
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Fig. S9. Batch effects between datasets with overlapping timepoints are only partially corrected by integration methods. We used Seurat v3 to integrate 5 datasets
with perinatal timepoints, using SCTransform for normalization and our maturation reference dataset as a reference for integration. A. UMAP plot of integrated datasets labeled
by timepoint. B. UMAP plot of integrated datasets labeled by dataset. C. Integrated UMAP plot coloured by gene expression of four maturation-related genes.
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Fig. S10. Entropy score is consistent for UMI datasets pre- and post-UMI collapsing. A. Ratio of entropy score for UMI datasets computed prior to vs. after UMI
collapsing.
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Fig. S11. Entropy score correlates modestly with previous trajectory inference methods. We reconstructed trajectories of our maturation reference dataset using A-B.
Monocle 2, C-D. Slingshot, and E-F. SCORPIUS.
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Fig. S12. Entropy score captures CM maturation-related gene expression trends in one-timepoint datasets. Gene trends across entropy score, as in Figure 3C, are
plotted for A. 10x Chromium heart dataset, B. Goodyer et al., and C. Duan et al. Figure continues on next page.

16 of 22 Suraj Kannan, Michael Farid, Brian L. Lin, Matthew Miyamoto, Chulan Kwon

.CC-BY-NC 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.04.02.022632doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.02.022632
http://creativecommons.org/licenses/by-nc/4.0/


Fig. S12. Continued from previous page. C. Gene expression trends for Duan et al.

Supplementary Methods

Mice. To generate mice for our reference dataset, we crossed B6.FVB-Tg(Myh6-cre)2182Mds/J mice (aMHC-cre, Jackson
Laboratory, Stock No. 011038) with B6.129(Cg)-Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J (mTmG, Jackson Laboratory,
Stock No. 007676). Both mice have C57BL/6J congenic background. All animals were maintained compliant to protocols by
the Johns Hopkins Animal Care and Use Committee.

CM Isolation. For isolation of CMs from e14-p4 timepoints, we used the neonatal cardiomyocyte isolation kit from Miltenyi
Biotec in conjunction with the gentleMACS Dissociator. For later timepoints, we performed Langendorff isolation of CMs. We
prepared the following buffers:

• Perfusion buffer: 120 mM NaCl, 5.4 mM KCl, 1.2 mM NaH2PO4, 20 mM NaHCO3, 5.5 mM glucose, 5 mM BDM, 5 mM
Taurine, and 1 mM MgCl2, adjusted to pH 7.4

• Digestion buffer: 40 mL Perfusion buffer plus 35.8 mg Collagenase Type II (Worthington CLS-2), 3 mg Protease (Sigma
P5147)

• Tyrode’s buffer: 140 mM NaCl, 5 mM KCl, 10 mM HEPES, 5.5 mM glucose, and 1 mM MgCl2, adjusted to pH 7.4

We used a horizontal (i.e. non-hanging) Langendorff apparatus with a chamber filled with perfusion buffer. To perform
isolation, we first performed isofluorane anaesthesia on non-heparinized mice. Mice were observed until clearly anaesthetized
and unresponsive to toe pinch, and subsequently euthanized by cervical dislocation. The heart was then rapidly excised from
the chest and cannulated to the Langendorff apparatus. Flow time and rate of flow were dependent on the age of the mouse
and were typically judged based on completeness of digestion to touch. Subsequently, the left ventricular free wall was excised
and minced. We filtered isolated cells through a 100 µM screen to eliminate large tissue chunks, spun down at 800 RPM for 1
minute (Eppendorf centrifuge 5702), and resuspended cells in 10 mL Tyrode’s buffer.

LP-FACS. We have detailed our LP-FACS approach previously (5). We reproduce our methods here. We utilized a COPAS
SELECT instrument (Union Biometrica). The COPAS SELECT was updated and rebranded as the FP-500, but the protocol
here study does not use the new features and thus the two are functionally indistinguishable. We optimized sorting for
cardiomyocytes by using a sort delay of 8 and sort width of 6. Additionally, we used the following fluorescence settings: ext
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gain 50, green gain 200, yellow gain 200, red gain 255, extension integral gain 50, green integral gain 200, yellow integral gain
200, red integral gain 255, green PMT 800, yellow PMT 800, red PMT 1100. Coincidence check was selected to ensure proper
single event sorting. We typically flowed cells between 20 - 60 events/second. We maintained cells in Tyrode’s buffer during
the sort and sorted them into Tyrode’s buffer. To run the machine, we used ClearSort Sheath Fluid (Sony, Lot 1218L345).

scRNA-seq Library Preparation and Sequencing. We performed sequencing using the mcSCRB-seq protocol (18). The protocol
has been described at protocols.io at dx.doi.org/10.17504/protocols.io.p9kdr4w. Pooled libraries were sequenced on one
mid-output lanes of the Illumina NextSeq500 with 16 base pair barcode read, 8 base pair i7 index read, and 66 base pair cDNA
read design.

Computational Analyses. All analyses performed in the paper were done in R; code to reproduce the figures can be found
at our Github (https://github.com/skannan4/cm-entropy-score). Dataset characteristics are presented in Supplementary
Tables 1 and 2, and details of each individual dataset are described in the Appendix. Differential gene expression analysis for
Figures 2C and 2D were done using Monocle 2, replacing Monocle 2’s generated pseudotime with entropy score or pseudotime
from other methods as appropriate.

Appendix

This appendix contains information about all of the datasets included for analysis in the study, including how they were
acquired and processed. Metrics for each dataset are provided in Supplementary Tables 1 and 2. We have relevant data on
Github at https://github.com/skannan4/cm-entropy-score. This includes an R workspace containing counts table for every
dataset in this study, an R workspace containing just the final processed calculations (for lower memory usage), code for
functions relevant to usage of entropy score, and code to reproduce the figures in the manuscript. If any additional information
is required, we encourage direct inquiries and aim to respond as soon as possible.

Mouse In Vivo.

10x Chromium
10k Heart Cells from an E18 mouse (v3 chemistry)
We downloaded the filtered feature/cell matrix from the 10x chromium datasets website
(https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.0/heart_10k_v3?). We subsequently performed
UMAP + clustering using Seurat and selected the healthy cardiomyocytes as the cluster clearly expressing cardiomyocyte
markers and having comparable/higher read/gene counts to other clusters.

T. Yvanka de Soysa et al. (Casey Gifford, Deepak Srivastava)
Single-cell analysis of cardiogenesis reveals basis for organ-level developmental defects
We pulled the UMI data from the tables uploaded by the authors at GEO (GSE126128), selecting only wild-type cells at
all available timepoints. We used the annotations provided by the authors as the source data to Extended Data Figure 1 to
identify tissue, and selected out cells labeled as “myocardium.” We used the annotations provided by the authors as source
data to Extended Figure 1 to annotate myocardial region, though we did not filter based on these annotations.

Daniel DeLaughter and Alexander Bick et al. (Jonathan Seidman, Christine Seidman)
Single-Cell Resolution of Temporal Gene Expression during Heart Development
We pulled the FastQ data from the authors’ private database (https://b2b.hci.utah.edu/gnomex/) and mapped using
STAR/FeatureCounts. We then performed T-SNE + clustering through Seurat and selected healthy cardiomyocytes as
the clusters clearly expressing cardiomyocyte markers. However, we found that this data consistently had higher mitochondrial
percentage at almost every timepoint compared to other datasets (most notably in the perinatal and postnatal timepoints).
Thus, we discarded this dataset.

Ji Dong et al. (Fuchou Tang)
Single-cell RNA-seq analysis unveils a prevalent epithelial/mesenchymal hybrid state during mouse organogenesis
The uploaded data of the authors does not contain mitochondrial reads. Therefore, we pulled and mapped the FastQ data
from the four heart samples from ENA (PRJNA343327) using the FASTerQ approach with Kallisto|Bustools. Read 1 was used
as the cdna read (base pairs 45 to 140, to avoid potential adaptor and poly A tails), while Read 2 was used for barcode (first 8
bp) and UMI (second 8 bp). Because of the short UMI length, we found that Kallisto|Bustools discarded many UMIs during
counting. We thus used a custom script to count UMIs from the Kallisto|Bustools output.

Jialei Duan et al. (Nikhil Munshi, Gary Hon)
Rational Reprogramming of Cellular States by Combinatorial Perturbation
The UMI data was pulled from the tables uploaded by the authors at GEO (GSE117795). We collated all of the in vivo samples,
with the 10x and Drop-seq data being handled separately. We then performed UMAP + clustering through Seurat and selected
healthy cardiomyocytes as the clusters clearly expressing cardiomyocyte markers while having comparable read counts to other
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clusters and comparable mitochondrial percentage (discarding clusters with notably high mitochondrial percentage or low
genes). We could readily distinguish atrial and ventricular myocytes using myosin light chain isoforms, and annotated the cells
accordingly. We found that the Drop-seq data had unusually high entropy, something we observed across multiple Drop-seq
datasets (and perhaps owing to low depth); thus, we discarded the Drop-seq data.

Hannah Dueck et al. (Junhyong Kim)
Deep sequencing reveals cell-type-specific patterns of single-cell transcriptome variation
The uploaded data of the authors does not contain mitochondrial reads. Therefore, we pulled the FastQ data from the
cardiomyocyte samples from ENA (PRJNA244374) and then mapped with Kallisto (pseudo in batch mode with the -quant
flag).

Monika Gladka and Bas Molenaar et al. (Eva von Rooij)
Single-Cell Sequencing of the Healthy and Diseased Heart Reveals Cytoskeleton-Associated Protein 4 as a New Modulator of
Fibroblasts Activation
Counts tables were kindly provided by the authors. We used UMAP + clustering through Seurat to select cardiomyocytes
based on clusters expressing cardiomyocyte markers. We observed, however, that the dataset had very high mitochondrial
percentages, often close to 90%. We thus discarded this dataset.

William Goodyer (Sean Wu)
Transcriptomic Profiling of the Developing Cardiac Conduction System at Single-Cell Resolution
We pulled the UMI data from tables uploaded by the authors at GEO (GSE132658). The authors kindly provided us with the
clustering used in the manuscript, which we used to select out cardiomyocytes. We used the PF (left and right) and AVN
datasets as the metadata was not available for the SAN data.

Matthew Hill et al. (James Martin)
A cellular atlas of Pitx2-dependent cardiac development
The UMI data was pulled from the tables uploaded by the authors (GSE131181), and the metadata tables were pulled from
the same source. We used the authors’ generated clusters and selected clusters with high expression of cardiomyocyte markers.
We subsequently selected only control cells from both timepoints.

Guanshuai Jia, Jens Preussner, and Xi Chen et al. (Thomas Braun)
Single cell RNA-seq and ATAC-seq analysis of cardiac progenitor cell transition states and lineage settlement
The counts data was pulled from the authors’ Github (https://github.com/loosolab/cardiac-progenitors). We used the data
from both Isl and Nkx GFP lines.

Suraj Kannan et al. (Chulan Kwon)
Large Particle Fluorescence-Activated Cell Sorting Enables High-Quality Single-Cell RNA Sequencing and Functional Analysis
of Adult Cardiomyocytes
This data was generated at our lab and is available at GEO (GSE133640). We used both the multi-chamber study and the
lived/fixed study and included all cells from both studies. Both 3’ counts and UMIs (output from zUMIs, using intronic and
exonic reads) were used for analysis.

Suraj Kannan et al. (Chulan Kwon)
Transcriptomic entropy quantifies cardiomyocyte maturation at single cell level
This data (described in this manuscript) was generated at our lab and is available at GEO (GSE147807). Both 3’ counts and
UMIs (output from zUMIs, using intronic and exonic reads) were used for anaysis.

Fabienne Lescroart, Xiaonan Wang, and Xionghui Lin et al. (Cedric Blanpain)
Defining the earliest step of cardiovascular lineage segregation by single-cell RNA-seq
We download the counts data from the author’s private website (http://singlecell.stemcells.cam.ac.uk/mesp1#data). We
subsequently selected only wild-type cells.

Guang Li and Adele Xu et al. (Sean Wu)
Transcriptomic Profiling Maps Anatomically Patterned Subpopulations among Single Embryonic Cardiac Cells
We pulled the counts data uploaded by the authors at GEO (GSE76118). We subsequently performed TSNE + clustering
through Seurat and selected clusters clearly identifiable as cardiomyocytes by marker gene expression. We selected all wild-type
cells, including from the Nkx experiment.

Guang Li et al. (Sean Wu)
Single cell expression analysis reveals anatomical and cell cycle-dependent transcriptional shifts during heart development
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We pulled the UMI data uploaded by the authors at GEO (GSE122403). We subsequently performed UMAP + clustering
through Seurat and selected clusters clearly identifiable as cardiomyocytes by marker gene expression.

Sean Murphy et al. (Chulan Kwon)
Single-Cell Analysis Identifies PGC1 as a Master Regulator of Cardiomyocyte Maturation
This data was generated in our lab; the raw data is currently not publicly available, but will be shortly. We selected only the
wild-type cardiomyocytes for further analysis. Both 3’ counts and UMIs (output from zUMIs, using intronic and exonic reads)
were used for analysis.

Seitaro Nomura and Masahiro Satoh et al. (Hiroyuki Aburatani, Issei Komuro)
Cardiomyocyte gene programs encoding morphological and functional signatures in cardiac hypertrophy and failure
The uploaded data of the authors does not contain mitochondrial reads. Therefore, we pulled and mapped the FastQ data
from the sham cardiomyocytes from ENA (PRJNA376183) using STAR/FeatureCounts. However, we found that the dataset
had a high percentage of mitochondrial reads; thus, we discarded this dataset.

Blanca Pijuan-Sala, Jonathan Griffiths, and Caroline Guibentif et al. (John Marioni and Berthold Gottgens)
A single-cell molecular map of mouse gastrulation and early organogenesis
We pulled the UMI data following the instructions from the authors’ Github page
(https://github.com/MarioniLab/EmbryoTimecourse2018/blob/master/download/download.sh). We subsequently used the
authors’ labelings to select cells classified as “Cardiomyocyte.”

Konstantina-Ioanna Sereti, Ngoc Nguyen, and Paniz Kamran et al. (Reza Ardehali)
Analysis of cardiomyocyte clonal expansion during mouse heart development and injury
The uploaded data of the authors does not contain mitochondrial reads. Therefore, we pulled the FastQ data from ENA
(PRJNA427266) and remapped using Kallisto (pseudo in batch mode with the -quant flag). We found the p1 timepoint to be
bimodal in terms of mitochondrial gene expression. However, because of the relatively small cell number and large fraction of
poor quality cells, we found that our top5 filter did not catch all low quality cells. We thus also excluded all p1 cells with
>30% mitochondrial reads.

Tabula Muris Consortium
A Single Cell Transcriptomic Atlas Characterizes Aging Tissues in the Mouse
We pulled the BAM files for the Fluidigm studies from the publicly available AWS bucket
(https://registry.opendata.aws/tabula-muris-senis/) and the annotations from the authors’ Figshare
(https://figshare.com/projects/Tabula_Muris_Senis/64982). Specifically, for the latter, we used the metadata stored in the
scanpy object, and matched the names of cells between this annotation and the raw data available through AWS. We focused
only on the Fluidigm data for our study. We subsequently selected all cells from the “heart" tissue category. As we were unsure
of the settings used to count with HTSeq, we recounted from the BAM files using FeatureCounts.

Florian Wunnemann and Asaf Ta-Shma et al. (Gregor Andelfinger)
Loss of ADAMTS19 causes progressive non-syndromic heart valve disease
Counts table and metadata were kind provided by the authors. We used UMAP + clustering through Seurat to select
cardiomyocytes based on clusters expressing cardiomyocyte markers and having comparable read and gene counts to other
clusters. We additionally annotated clusters as atrial or ventricular, though we analyzed both sets of cells. However, as with
several other Drop-seq datasets, we found that the data had unusually high entropy (and perhaps owing to low depth); thus,
we discarded this dataset.

Yang Xiao et al. (James Martin)
Hippo Signaling Plays an Essential Role in Cell State Transitions during Cardiac Fibroblast Development
We pulled the UMI data uploaded by the authors are GEO (GSE100861). The metadata was kindly provided by the authors,
and included the clustering used in the manuscript. We selected wild-type cells in the cardiomyocyte cluster. However, as with
several other Drop-seq datasets, we found that the data had unusually high entropy (and perhaps owing to low depth); thus,
we discarded this dataset.

Haiqing Xiong, Yingjie Luo, Yanzhu Yue, and Jiejie Zhang et al. (Albin He)
Single-Cell Transcriptomics Reveals Chemotaxis-Mediated Intraorgan Crosstalk During Cardiogenesis
The uploaded data of the authors does not contain mitochondrial reads. Therefore, we pulled and mapped the FastQ data
from the four heart samples from ENA (PRJNA429249) using the FASTerQ approach with Kallisto|Bustools. Read 1 was used
as the cdna read (base pairs 45 to 140, to avoid potential adaptor and poly A tails), while Read 2 was used for barcode (first 8
bp) and UMI (second 8 bp). Because of the short UMI length, we found that Kallisto|Bustools discarded many UMIs during
counting. We thus used a custom script to count UMIs from the Kallisto|Bustools output.
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Michail Yekelchyk et al. (Thomas Braun)
Mono- and multi-nucleated ventricular cardiomyocytes constitute a transcriptionally homogenous cell population
We pulled the mapped BAM files of wild-type cells from ENA (PRJEB29049) and recounted using FeatureCounts. However,
we found that the dataset had high mitochondrial read percentage, and thus we discarded this dataset.

Human In Vivo.

Michaela Asp and Stefania Giacomello et al. (Joakim Lundberg)
A Spatiotemporal Organ-Wide Gene Expression and Cell Atlas of the Developing Human Heart
We pulled the UMI data and annotations for the single cell sequencing data from the authors’ website
(https://www.spatialresearch.org/resources-published-datasets/doi-10-1016-j-cell-2019-11-025/). We used the authors’ clustering
and selected all cells classified as cardiomyocytes.

Yueli Cui, Yuxuan Zheng, and Xixi Liu et al. (Jie Qiao, Fuchou Tang)
Single-Cell Transcriptome Analysis Maps the Developmental Track of the Human Heart
The uploaded data of the authors does not contain mitochondrial reads. Therefore, we pulled and mapped the FastQ data
from the four heart samples from ENA (PRJNA415637) using the FASTerQ approach with Kallisto|Bustools. Read 1 was
used as the cdna read (base pairs 45 to 140, to avoid potential adaptor and poly A tails), while Read 2 was used for barcode
(first 8 bp) and UMI (second 8 bp). We then performed UMAP + clustering in Seurat, and selected clusters that clearly
expressed cardiomyocyte markers. Because of the short UMI length, we found that Kallisto|Bustools discarded many UMIs
during counting. We thus used a custom script to count UMIs from the Kallisto|Bustools output. We subsequently found that
some, though not all, samples had unusually high mitochondrial percentages (namely - HE13W RV; HE17W AV, LA, LV, TV;
HE20W RA; HE25W all samples). We also removed samples as post-filtering, there were too few for useful analysis (namely -
HE23W, HE24W).

Makoto Sahara and Federica Santoro et al. (Kenneth Chien)
Population and Single-Cell Analysis of Human Cardiogenesis Reveals Unique LGR5 Ventricular Progenitors in Embryonic
Outflow Tract
We downloaded the raw FastQ data from ENA (PRJNA510181), and subsequently mapped using Kallisto (pseudo in batch
mode with the -quant flag). We had some concerns about several timepoints in this study due to high mitochondrial percentage.
We eliminated some (namely - HE7W OFT, A; and HE8W); however, we are somewhat unsure about the quality of the data
HE7W onwards.

Hemant Suryawanshi et al. (Jill Buyon, Thomas Tuschl)
Cell atlas of the foetal human heart and implications for autoimmune-mediated congenital heart block
The UMI data for the wild-type hearts was kindly provided by the authors as a Seurat object, and also included the authors’
UMAP clustering. We utilized their clustering to identify and select cardiomyocytes; we additionally filtered out cells with
notably high mitochondrial percentage or low counts/genes.

Li Wang, Peng Yu, Bingying Zhou, and Jiangping Song et al. (Shengshou Hu)
Single-cell reconstruction of the adult human heart during heart failure and recovery reveals the cellular landscape underlying
cardiac function
We download the UMI data and phenotype tables provided by the authors at GEO (GSE109816), selecting only the healthy
heart tissue data. We used the authors’ provided metadata to select cardiomyocytes. We found that three of the four ventricular
donors had extremely high mitochondrial percentages (∼70%). Very little is currently known about human adult CMs, so it
is difficult to assess the validity of this range. However, one ventricular sample had a lower percentage, which also matched
the atrial samples. We chose to therefore exclude the three samples with extremely high mitochondrial percentage, pending
discovery of further information.

Human Directed Differentiation.

Sherri Biendarra-Tiegs et al. (Timothy Nelson)
Single-Cell RNA-Sequencing and Optical Electrophysiology of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes
Reveal Discordance Between Cardiac Subtype-Associated Gene Expression Patterns and Electrophysiological Phenotypes
The counts data was kindly provided by the authors. We selected cardiomyocytes using the annotations provided in Figure 4 of
the manuscript.

Jared Churko et al. (Nathan Salomonis, Joseph Wu)
Defining human cardiac transcription factor hierarchies using integrated single-cell heterogeneity analysis
We pulled the UMI data for all timepoints from the authors’ Synapse (https://www.synapse.org/#!Synapse:syn18078447/files/),
using the V2 chemistry.
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Clayton Friedman, Quan Nguyen, and Samuel Lukowski et al. (Joseph Powell, Nathan Palpant)
Single-Cell Transcriptomic Analysis of Cardiac Differentiation from Human PSCs Reveals HOPX-Dependent Cardiomyocyte
Maturation
We pulled the UMI data for all timepoints from the authors’ processed data upload at ArrayExpress (E-MTAB-6268,
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-6268/samples/).

Hang Ruan and Yingnan Liao et al. (Leng Han, Li Wang)
Single-cell reconstruction of differentiation trajectory reveals a critical role of ETS1 in human cardiac lineage commitment
We pulled the UMI for the D9, D14, and D60 timepoints from the tables uploaded by the authors at GEO (GSE129987).

Adam Selewa et al. (Sebastian Pott, Anindita Basu)
Systematic Comparison of High-throughput Single-Cell and Single-Nucleus Transcriptomes during Cardiomyocyte Differentiation
We pulled the UMI data for the Drop-seq samples from the tables uploaded by the authors at GEO (GSE129096). However, as
with several other Drop-seq datasets, we found that the data had unusually high entropy (and perhaps owing to low depth);
thus, we discarded this dataset.

Mouse Direct Reprogramming.

Nicole R. Stone and Casey A. Gifford et al. (Deepak Srivastava)
Context-Specific Transcription Factor Functions Regulate Epigenomic and Transcriptional Dynamics during Cardiac Reprogramming

We pulled the UMI data for the 3’ study from tables uploaded by the authors at GEO (GSE131328). We subsequently
performed TSNE + clustering through Seurat and compared the generated clusters to those in the manuscript to assign cells
into the putative trajectory reprogramming groups (as done by the authors).
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