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Abstract A primary limitation in the use of pluripotent stem cell-derived cardiomyocytes
(PSC-CMs) for both patient health and scientific investigation is the failure of these cells to
achieve full functional maturity. In vivo, cardiomyocytes undergo numerous adaptive structural,
functional and metabolic changes during maturation. By contrast, PSC-CMs fail to fully undergo
these developmental processes, instead remaining arrested at an embryonic stage of maturation.
There is thus a significant need to understand the biological processes underlying proper CM
maturation in vivo. Here, we discuss what is known regarding the initiation and coordination of
CM maturation. We postulate that there is a critical perinatal window, ranging from embryonic
day 18.5 to postnatal day 14 in mice, in which the maturation process is exquisitely sensitive to
perturbation. While the initiation mechanisms of this process are unknown, it is increasingly clear
that maturation proceeds through interconnected regulatory circuits that feed into one another
to coordinate concomitant structural, functional and metabolic CM maturation. We highlight
PGC1α, SRF and the MEF2 family as transcription factors that may potentially mediate this
cross-talk. We lastly discuss several emerging technologies that will facilitate future studies into
the mechanisms of CM maturation. Further study will not only produce a better understanding
of its key processes, but provide practical insights into developing a robust strategy to produce
mature PSC-CMs.
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Abstract figure legend Here, we postulate that there is a critical window, ranging from embryonic day 18.5 to postnatal
day 14 in mice, in which interconnected regulatory circuits enable coordinated, concomitant structural, functional and
metabolic cardiomyocyte maturation.

There is tremendous enthusiasm in the application
of pluripotent stem cell (PSC) technology to cardio-
vascular medicine. PSCs (including embryonic stem cells
(ESCs) and induced PSCs (iPSCs)) can be expanded and
subsequently differentiated into cardiomyocytes (CMs)
in vitro. Because adult CMs are non-proliferative and
difficult to obtain from human patients, PSC-derived
CMs (PSC-CMs) serve as the most viable approach to
generating large quantities of CMs ex vivo (Batalov &
Feinberg, 2015). Among many potential uses, PSC-CMs
have been proposed for application in regenerative
medicine, drug and toxicity screening, and disease
modelling (Passier et al. 2006; du Pré et al. 2013; Wang
et al. 2013; Chen et al. 2016; Youssef et al. 2016).
Given the burden of cardiovascular disease (Benjamin
et al. 2017) and the need for improved cardiac cellular
models (Gwathmey et al. 2009), PSC-CMs offer potential
solutions to significant unmet health needs in the United
States.

Extensive analysis has led to an improved under-
standing of regulatory pathways in early cardiogenesis.
This in turn has allowed for the development of
improved and optimized protocols, inspired by in vivo
development, to differentiate PSCs to CMs in vitro
(Kattman et al. 2011; Burridge et al. 2012; Mummery
et al. 2012; Uosaki et al. 2012; Cao et al. 2013; Lian
et al. 2013). Despite these successes, however, use of
PSC-CMs has been limited due to the failure of these
cells to mature to a fully adult phenotype in vitro.
In vivo, mature CMs demonstrate increased size, poly-
ploidization, development of well-formed sarcomeres,
improved calcium handling, t-tubules, large numbers
of mitochondria, primarily oxidative metabolism, and
other characteristic features (Robertson et al. 2013; Yang
et al. 2014). However, PSC-CMs fail to show these
same characteristics, and instead resemble mid-to-late
embryonic CMs, even following extended culture (Beqqali
et al. 2006; Cao et al. 2008; Snir et al. 2009; Davis et al. 2011;
Robertson et al. 2013; Keung et al. 2014; Yang et al. 2014;
Uosaki et al. 2015; Veerman et al. 2015). These differences
significantly impede further research and clinical use of
PSC-CMs.

As with advances in PSC-CM differentiation, improved
maturation of PSC-CMs will likely require deeper
understanding of CM maturation as it occurs during
development in vivo. To date, the regulatory mechanisms
underlying CM maturation remain an open area

of investigation. The developing heart is a highly
dynamic environment, characterized by changes in
mechanical forces, electrical coupling, extracellular matrix
composition, oxygen and cytokine gradients, and many
others (Robertson et al. 2013; Yang et al. 2014); it is
unclear which, if any, of these properties serves as upstream
regulators or downstream effects of others. As many facets
of maturation are conserved between species, animal
models (including rodent as well as large animal, such
as sheep, models) have been a primary tool for under-
standing regulation of CM maturation in vivo. Knowledge
from these animal studies has been further supplemented
by in vitro studies seeking to recapitulate aspects of the
native milieu (Scuderi & Butcher, 2017). Though no single
ex vivo method has captured the full complexity of in
vivo maturation nor generated fully mature CMs, each has
furthered our knowledge of the biological underpinnings
of CM maturation.

In this review, we aim to summarize potential regulatory
mechanisms linking together the multiple facets of CM
maturation. As our focus is on in vivo maturation, we
primarily consider studies utilizing animal models. While
in vivo human data regarding maturation is limited, where
appropriate, we also comment on informative results from
in vitro studies utilizing human PSC-CMs. We postulate a
postnatal ‘critical window’ for maturation, in which inter-
connected positive feedback circuits regulate concomitant
structural, functional, metabolic and transcriptomic CM
maturation. We discuss the implications of this critical
window in the generation of mature PSC-CMs. We lastly
look forward to new technologies that may enable further
studies of regulatory mechanisms in CM maturation.

Dynamics of CM maturation

The temporal dynamics of CM maturation have been
comprehensively reviewed elsewhere (Robertson et al.
2013; Galdos et al. 2017). Nevertheless, we briefly
summarize some of the most important aspects here,
focusing particularly on the rodent model. In the perinatal
period, CMs undergo significant structural changes as
they transition from small, round cells with disorganized
features to large, cylindrical cells with highly organized
components. Beginning at embryonic day 18.5 (e18.5) and
continuing through the first weeks of birth, CMs increase
in cell length and length-to-width ratio while displaying
longer and more aligned myofibrils (Hirschy et al. 2006).
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From e19.5 to postnatal day 7 (p7), several sarcomeric
proteins (including myosin heavy chain, cardiac troponin
T, and cardiac troponin I) undergo isoform switching to
enable more efficient contraction (Siedner et al. 2003;
Yin et al. 2015). CMs fully cease proliferation around
p3–p7 (Porrello et al. 2011; Notari et al. 2018) and
subsequently undergo hypertrophic growth with poly-
ploidization and multinucleation (Leu et al. 2001; Liu
et al. 2010). From an electrophysiological perspective,
ion channel activity and localization changes significantly
postnatally (Liu et al. 2002; Harrell et al. 2007). Maturation
of cell-cell and cell-ECM junctions, particularly at the
intercalated disc, occur during the first week of birth
(Wu et al. 2002; Hirschy et al. 2006). T-tubulation, which
enables efficient excitation-contraction coupling, initiates
at approximately p6 but continues through 2—3 weeks
of birth (Sedarat et al. 2000). Lastly, CMs undergo
several adaptive metabolic changes. While mitochondrial
remodelling begins as early as e13.5 (Hom et al. 2011),
significant improvements in mitochondrial number, size,
distribution and internal organization occur in the peri-
and postnatal periods (Hallman, 1971; Smolich et al.
1989; Marin-Garcia et al. 2000; Vega et al. 2015).
Likewise, from p0 to p7, CMs undergo a transition from
primarily glycolytic metabolism to one reliant on oxidative
phosphorylation, and the primary energy source trans-
itions from glucose to fatty acids (Marsh & Marsh, 1991;
Itoi & Lopaschuk, 1993; Lopaschuk & Jaswal, 2010). Taken
as a whole, these adaptive processes enable mature myo-
cytes to meet their highly energetic demands. While many
key changes occur up through the first week of birth, CM
maturation progressively continues, with CMs reaching
their maximal volume at approximately 3 months of age
(Leu et al. 2001).

Species-specific differences in CM maturation

The hearts of different species have notably different force
generation demands; correspondingly adult myocytes
show phenotypic differences across species, particularly
in terms of contractile and electrophysiological properties
(Milani-Nejad & Janssen, 2015). While variations in
maturation dynamics between species remain relatively
unstudied, some prominent differences have been
observed. For example, in mice, heart rate increases from
approximately 150—190 beats per minute (bpm) at e12.5
to 245 bpm at e19.5 and eventually reaches a mature heart
rate of 310–840 bpm (Yu et al. 2008). In contrast, the
human fetal heart rate is 120–160 bpm, and progressively
slows during maturation to achieve an adult heart rate of
60–100 bpm (Pildner von Steinburg et al. 2013). As a result,
the shape of the rodent action potential is different from
that of the human action potential, with a notably shorter
duration and lack of a prominent plateau phrase. The
differences are further reflected in expression dynamics

of various isoforms of contractile proteins. While isoform
switching is observed across species in CM maturation,
the specific switches depend on each particular species’
cardiac contraction/relaxation demands. One particularly
well-known example of this phenomenon is myosin heavy
chain (MHC) isoform switching. In rodent ventricles,
MHC transitions from the β-isoform to the α-isoform
over the course of maturation, enabling improved contra-
ctile velocity. In human ventricles, the β-isoform increases
over maturation, enabling improved contractile economy
and lower tension cost (Milani-Nejad & Janssen, 2015).
T-tubulation dynamics also show species differences.
Unlike in smaller mammals, primitive t-tubules may
be observed in fetal development in large mammals
such as sheep, cows, rhesus monkeys and humans (Kim
et al. 1992). Lastly, nucleation dynamics also demonstrate
significant species variations in maturation. For example,
while terminal differentiation of CMs to multinucleated,
quiescent cells occurs largely postnatally in rodents, this
process may be up to 75% complete prior to birth in
sheep (Burrell et al. 2003; Jonker et al. 2007). While
binucleation occurs prenatally in humans, as in sheep,
adult human hearts present with a notably smaller number
of binucleated myocytes (25–60%) compared to both
rodents and sheep (�90% binucleated) (Botting et al.
2012). It is estimated that human CMs reach an adult-like
state by 10 years of age (Takamatsu et al. 1983; Peters
et al. 1994).

Further investigation is required to understand the
mechanisms underlying these species-specific differences
in CM maturation dynamics and adult CM properties.
Intriguingly, comparative gene expression analysis
indicates that transcriptomic changes across maturation
are broadly conserved in mouse and humans (Uosaki
& Taguchi, 2016). On the other hand, xenogenic trans-
plantations of PSC-CMs typically yield only partially
mature myocytes, suggesting significant environmental
or regulatory differences between species with regards
to maturation (Dai et al. 2007; Laflamme et al. 2007;
Shiba et al. 2012; Chong et al. 2014; Liu et al. 2018).
It is possible that while gene trends remain similar
across species, species-specific gene dosages or relative
gene expression levels contribute to species differences
in maturation. Moreover, these species-specific effects
may be regulated through post-translational processes.
Identifying a mechanism underlying species-specific
differences in CM maturation remains a significant
unanswered question in cardiac developmental biology.

Initiation of CM maturation

To date, the factor(s) responsible for initiating
CM maturation remain unknown. Birth, which is
accompanied by significant changes in haemodynamics,
oxygenation and biochemical milieu (Rudolph, 1970;
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Dawes et al. 1980; Teitel et al. 1987), has frequently been
thought of as a trigger for maturation. During birth, the
closure of shunts in fetal circulation results in significant
changes in cardiac load and output (Agata et al. 1991;
Schubert et al. 2013), which in turn promotes structural,
contractile and force generation improvements in CMs
(Barbera et al. 2000; Ruan et al. 2015). Oxygenation
of arterial blood doubles (Teitel et al. 1987), leading
to metabolic and mitochondrial maturation through
reduction in HIF1a signalling (Breckenridge et al. 2013;
Neary et al. 2014). The timely regulation of these changes
is critical; for example, in pediatric patients, when the
fetal-to-neonatal transition in circulation does not occur
(often called ‘persistent fetal circulation’), myocardial
maturation may become delayed (Hines, 2013). In several
studies conducted in both humans and other animals, pre-
mature birth was found to be associated with abnormal
CM hypertrophy and nucleation and premature cell cycle
cessation (Bensley et al. 2010, 2018; Aye et al. 2017). As a
caveat, however, patients in these studies were often treated
antenatally and/or postnatally with corticosteroids, which
may in turn affect CM maturation (Agnew et al. 2017).

Despite these observations, the idea of birth as a
triggering event for CM maturation has been contested
(Jonker et al. 2015). Indeed, many facets of maturation
appear to be initiated in utero, including increase in myo-
cyte length and volume, myofibril length and number,
sarcomeric isoform switching, cessation of cell cycle,
aerobic metabolism, and other changes (Kim et al. 1992;
Burrell et al. 2003; Siedner et al. 2003; Hirschy et al.
2006; Jonker et al. 2007, 2015; Porter et al. 2011; Baker
& Ebert, 2013; Yin et al. 2015). Moreover, disruption of
the intrauterine environment, particularly in the period
prior to birth, can lead to retardation of CM maturation
(Bubb et al. 2007). Thus, it appears that the initiation
of CM maturation occurs in the period prior to birth
(e.g. e16.5–e18.5 in mice, gestational days 110–130 of 147
in sheep, pregnancy weeks 28–32 in human), perhaps in
anticipation of significant changes in cardiac function in
the fetal-to-neonatal transition.

The evolving hormonal and neuroendocrine
environment of the fetus may influence these maturation
phenomena. For example, in mice, endogenous
glucocorticoid production increases from e15.5 and peaks
at e17.5; correspondingly, maternal plasma glucocorticoid
levels peak at approximately e16–e17 (Rog-Zielinska et al.
2015). This spike in glucocorticoids has been shown to
mediate CM myofibrillar structure, oxygen consumption,
ion channel expression and calcium handling, with many
of these processes mediated in a PGC1α-dependent
manner (Rog-Zielinska et al. 2013, 2015). Similarly,
in rodents, thyroid hormone secretion initiates at
approximately e17.5, and mediates transcriptional effects
on CM contractile function, among other effects (Li
et al. 2014). Other hormones that have been implicated

in CM maturation include IGF1 and NRG1 (Rupert &
Coulombe, 2017).

Evidence for a critical perinatal window in maturation

While the initiation of CM maturation is still unknown,
recent data strongly demonstrate the critical importance
of the perinatal cardiac environment in regulating CM
maturation. For example, we recently demonstrated
that transplantation of ESC-CMs into the neonatal
rat heart at p0–p3 led to generation of CMs that
were structurally, functionally and transcriptomically
indistinguishable from adult CMs (Cho et al. 2017).
Similarly, Kadota et al. (2017) have shown that full
maturation of neonatal rat ventricular CMs (NRVCMs) is
possible following transplantation in the neonatal heart.
On the other hand, results of same-species transplantation
experiments in adult hearts have been more equivocal.
For example, some studies have observed significant
and near-complete maturation of transplanted cells by
structural and electrophysiological analysis, including
primary cells (Klug et al. 1996; Gojo et al. 1997; Roell
et al. 2002; Rubart et al. 2003) and PSC-CMs (Didié et al.
2013). On the other hand, other studies have shown only
partial and limited maturation even following extended
transplantation, with failure to achieve full adult size and
structure (Leor et al. 1996; Watanabe et al. 1998; Reinecke
et al. 1999; Müller-Ehmsen et al. 2002; Christoforou et al.
2010; Shiba et al. 2016). Likewise, we have observed
that transplantation of ESC-CMs at p14 resulted in
limited maturation with incomplete sarcomere alignment
(Cho et al. 2017). In addition to these transplantation
experiments, other studies have demonstrated that
the proliferation-to-hypertrophy transition (Anatskaya
et al. 2010) and mitochondrial/metabolic maturation
(Gong et al. 2015) processes are exquisitely sensitive to
perturbation up to approximately 2—3 weeks after birth in
rodents. Based on these data, we believe that the perinatal
time period (which we define as e18.5–p14 in rodents) may
represent a critical window for CM maturation, analogous
to the perinatal regenerative window. Perturbations to
normal developmental phenomena during this time
period may lead to an immature CM phenotype.

Critical window for maturation in PSC-CMs

Intriguingly, a similar critical window for maturation
may be observed in PSC-CM differentiation. In vitro,
PSC-CMs mature through the first 20 days of culture
before undergoing maturation arrest (Uosaki et al. 2015).
At this time, they structurally, functionally and trans-
criptomically resemble fetal CMs (Robertson et al. 2013;
Galdos et al. 2017), though they display numerous
aberrant regulatory networks (Uosaki et al. 2015). While
it is thought that long term culture improves maturation
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of PSC-CMs (Kamakura et al. 2013; Kuppusamy et al.
2015; Dias et al. 2018), recent analyses have suggested
that even at 1 year of culture, PSC-CMs continue to
resemble late embryonic/early fetal CMs (DeLaughter
et al. 2016). We hypothesize that, analogous to in vivo
development, PSC-CMs are receptive to signalling cues
prompting them to undergo maturation during an early
critical window. Perturbation during this window (e.g.
due to stresses induced by cell culture) leads to failure of
complete maturation.

This hypothesis is supported by transplantation studies.
For example, Kadota et al. (2017). observed that trans-
plantation of early human PSC-CMs at day 5 of
differentiation into neonatal rat heart led to significantly
improved maturation over PSC-CMs transplanted at days
18–20 of differentiation. Similarly, we have observed
complete maturation of mouse ESC-CMs transplanted
into neonatal heart at days 5–7 of differentiation (Cho
et al. 2017), but incomplete maturation of the same cells
when transplanted at day 14+ of differentiation (authors’
unpublished data). We summarize these results in Fig. 1. It
is possible that the results of these transplantation studies
are confounded by difficulties in handling/dissociating late
stage PSC-CMs from culture or their poor retention in
vivo. Interestingly, however, Ronaldson-Bouchard et al.
(2018) recently described a similar phenomenon in an
ex vivo bioreactor system in which iPSC-CMs were sub-
jected to various electrical simulation regimes. They
found that an intensity training-based simulation protocol

Age of 

transplanted

PSC-CMs
d12

d5
e18.5 p14

Age of transplantation host

Critical window

Partially mature

Fully mature

Figure 1. Summary of transplantation experiments for
PSC-CM maturation
When early PSC-CMs are transplanted in vivo during the perinatal
period, they achieve full structural, functional and transcriptomic
maturity. However, when either late PSC-CMs are transplanted or an
older host is used, only partial maturation occurs. These results
support the existence of a critical window for CM maturation both
in vitro and in vivo.

resulted in significant force generation, calcium handling
and ultrastructural maturation in early stage (day 12)
iPSC-CMs but only limited maturation in late stage (day
28) iPSC-CMs.

These results have significant research implications for
the use of PSC-CMs. In particular, interventions designed
to improve the maturation of PSC-CMs may be limited
if they use cells that have already passed the critical
window and have undergone subsequent maturation
arrest. Likewise, early stage PSC-CMs may be most optimal
for regenerative medicine therapies to ensure that trans-
planted cells achieve full maturity in their transplanted
niche.

Regulation of coordinated maturation
processes

While a number of studies have aimed to identify factors
regulating various individual aspects of CM maturation
(Galdos et al. 2017)., it is still unclear how maturation is
coordinated. A number of individual maturation-related
processes have been identified, as discussed in previous
sections (e.g. structural, functional, metabolic, cell cycle
maturation). However, a major open question is whether
these processes are independently regulated or, if they are
co-regulated, whether they are organized hierarchically
or interdependently. To date, it has been difficult to
individually manipulate each maturation-related process
in vivo to observe the effect on other processes. In
vitro studies, typically using PSC-CM models, have
facilitated this type of perturbation study. Intriguingly,
several studies have hinted at significant co-regulation
of maturation processes. As an example, fatty acid
treatment of PSC-CMs not only results in expected
improvements in PSC-CM metabolic maturation, but
also leads to improvements in sarcomeric gene expression
and structure, calcium handling and cell cycle inhibition
(Correia et al. 2017; Mills et al. 2017). This in turn
suggests potential regulation of structural, functional and
cell cycle maturation through a metabolic mechanism. In
Table 1, we summarize studies in which perturbation of
one facet of CM maturation results in novel observations
of improvements in other maturation-related processes.
What emerges from these data supports the notion of
maturation as composed of intertwined regulatory circuits
that feed into one another to allow concomitant structural
and functional maturation (Fig. 2).

How the interplay between the various facets of CM
maturation is regulated remains unknown. It is still
unclear whether circuits are co-regulated through direct
means, for example a common upstream transcriptional
mechanism, or through indirect methods. Moreover, while
in vitro methods have been highly informative in terms
of demonstrating potential co-regulation, the numerous
differences between experimental methodologies, as well

C© 2018 The Authors. The Journal of Physiology C© 2018 The Physiological Society
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Table 1. In vitro studies demonstrate co-regulated circuits in maturation

Perturbation Primary response Secondary effect Reference

Structural
Anisotropic ECM

micropatterning

� Myofibril alignment
� Increased contractile force

� Improved anisotropic calcium
propagation

� Improved action potential
amplitude and maximum
upstroke velocity

� Primitive t-tubulation
� Improved basal and maximal

respiration, and spare
respiratory capacity

(Ribeiro et al. 2015;
Lyra-Leite et al.
2017)

3D CM aggregate
formation

� Improved sarcomeric gene
expression and structure

� Increased oxidative
phosphorylation gene
expression

� Increased TCA cycle flux

(Correia et al. 2018)

Functional
Auxotonic contraction

of engineered heart
tissue (EHT)

� Increased cellular alignment
and sarcomeric structure

� Improved mitochondrial
structure

� Increased mitochondrial
protein content and mass

� Increased oxidative
metabolism

(Ulmer et al. 2018)

Electrical stimulation
with increasing
intensity

� Increased structural, calcium
handling, and mature ion
channel gene expression

� Improved calcium handling
and contraction force

� Improved ultrastructural
organization

� Improved mitochondrial
density

� Increased oxidative
phosphorylation gene
expression and activity

(Ronaldson-Bouchard
et al. 2018)

Metabolic
Differentiation with

fatty acids and
galactose

� Increased oxidative
metabolism

� Improved transcription of
contractile and sarcomeric
genes

� Improved sarcomeric
structure and alignment

� Improved calcium transient
velocity

� Improved fractional
shortening and force
generation

(Correia et al. 2017)

Palmitate treatment � Increased fatty acid
oxidation and oxidative
metabolism

� Cell cycle inhibition
� Increased sarcomeric isoform

switching

(Mills et al. 2017)

Glucose deprivation
following
differentiation

� Increased mitochondrial
structure and oxidative
capacity

� Increased sarcomere and
contractile gene expression

� Cell cycle inhibition
� Improved calcium handling

dynamics
� Increased maximal upstroke

velocity

(Nakano et al. 2017)

(Continued)
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Table 1. Continued

Perturbation Primary response Secondary effect Reference

Cell cycle
Mitomycin C treatment � Abrogated Ki67 expression

and cell cycle cessation

� Increased sarcomere
assembly

� Improved beat rate

(Zhou et al. 2017)

Here, we describe several in vitro studies of myocyte maturation in which one pathway of maturation (e.g. structural, functional,
metabolic, cell cycle) was perturbed experimentally. We describe putative primary and secondary effects of the intervention. This
table is not an exhaustive list of tissue engineered approaches to improved CM maturation; for more comprehensive reviews on that
topic, please see Zhu et al. (2014) and Scuderi & Butcher (2017). Instead, we compile studies in which perturbation of one maturation
pathway led to previously undescribed changes to other maturation-related processes, suggesting potential co-regulation between
pathways.

as potential divergence from in vivo biology, have made
it difficult to identify common mechanisms responsible
for coordination of maturation. We anticipate that new
studies will shine further light on this question.

Nevertheless, given the tight coordination of the
maturation regulatory network, we predict the existence
of factors that must be upstream of and simultaneously
directly regulate multiple facets of maturation. Here
we highlight three factors that may fit this description:
PGC1α, SRF and MEF2. We do not intend this to

be an exhaustive list, but rather highlight these factors
because they have previously been implicated in multiple
maturation circuits in vivo. These factors are known to
interact with one another and have been implicated as
key nodes in the CM maturation regulatory network (Xu
et al. 2009; Schlesinger et al. 2011). Moreover, PGC1α and
SRF in particular are dysregulated in PSC-CM maturation
and may contribute to maturation arrest (Uosaki et al.
2015). While it is possible that these factors may exhibit
species-specific regulatory patterns, the largely conserved

• Aligned sarcomeres with 

   defined ultra-structural 

   features

• T-tubules

• Hypertrophy 

• Improved contractile

   force generation

• Improved calcium handling 

• Increased mitochondrial

   size and number

• Oxidative metabolism

• Fatty acid utilization 

• Cell cycle exit

• Polyploidization and

   multinucleation 

Structural 

maturation

Cell cycle 

maturation

Functional 

maturation

Metabolic 

maturation

Immature CM

Mature CM

Figure 2. Cross-talk between processes involved in CM maturation
During maturation, CMs undergo significant changes in structure, function, metabolism and cell cycle, among other
processes. Evidence from various in vitro studies suggests that these processes may function in an interdependent
manner, allowing for coordinated CM maturation.
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nature of these factors suggests they may play a significant
role in CM maturation across species (Uosaki & Taguchi,
2016).

PGC1α

Peroxisome proliferator-activated receptor γ (PPARγ)
coactivator-1α (PGC1α) is a critical regulator of
mitochondrial biogenesis in a variety of tissues (Finck
& Kelly, 2006) and plays a role in metabolic regulation in
the heart in development and disease (Duncan & Finck,
2008). In addition to PPARg, PGC1α binds to a large
number of nuclear receptor and non-nuclear receptor
transcription factors to mediate chomatin remodelling
and gene transcription (Finck & Kelly, 2006). In the
mouse fetal heart, PGC1α is a target of glucocorticoid
activity (Rog-Zielinska et al. 2015) and is expressed
beginning at e15.5 (Lai et al. 2008). Critically, PGC1α
has been implicated in mediating the metabolic switch
away from glycolysis to oxidative phosphorylation and
fatty acid metabolism (Lehman & Kelly, 2002). Over-
expression of PGC1α at birth leads to a dramatic increase
in mitochondrial volume density and size (Russell et al.
2004). Developmentally, PGC1α has partial redundancy
with PGC1b; indeed, while knockout of either alone leads
to a minimal phenotype under physiological conditions,
the double knockout is lethal shortly after birth (Lai
et al. 2008). PGC1α/b−/- mice show severe defects in
mitochondrial number and size, and demonstrate a
failure to transition from anaerobic glycolysis to oxidative
metabolism with fatty acid utilization. Interestingly,
PGC1α may have effects on CM sarcomeric structure and
function as well. For example, the same study showed
that PGC1α/b−/- mice display CMs with significant
disarray or even absence of sarcomeric structure. In an
in vitro study of fetal myocytes, PGC1α siRNA-mediated
knockdown eliminated myofibril maturation induced
by glucocorticoid treatment (Rog-Zielinska et al. 2015).
Likewise, PGC1α knockdown in PSC-CMs led to
decreased CM beat rate, altered action potential and
a failure of sarcomeric integrity (Birket et al. 2013).
Currently, it is thought that PGC1α mediates its effects
on sarcomeric organization and contractile function
indirectly through energetic/metabolic regulation (Birket
et al. 2013; Rog-Zielinska et al. 2015), though studying
maturation-specific direct targets of PGC1α is an area of
ongoing investigation.

SRF

Serum response factor (SRF) has been implicated in
key processes in mesoderm formation and muscle
development (Arsenian et al. 1998), and is essential to
cardiomyocyte differentiation and maturation (Parlakian
et al. 2004; Dirkx et al. 2013). CM-specific deletion

of SRF leads to embryonic lethality between e10.5
and e13.5 in mice, and is characterized by failure of
chamber maturation and disruption of the CM contractile
apparatus (Parlakian et al. 2004; Balza & Misra, 2006). SRF
also mediates cardiac function postnatally. For example,
Zhang et al. (2001) generated a CM-specific SRF mutant
with impaired binding of SRF to target binding sites.
These mice died within 12 days of birth and demonstrated
significant dilated cardiomyopathy. SRF disruption in
adult mice similarly leads to dilated cardiomyopathy
and heart failure-induced death, with significant defects
in CM structural integrity and contractile function
(Parlakian et al. 2005). It is increasingly recognized
that SRF forms a key node in the cardiac transcription
network, and may regulate a range of CM processes
including contraction, conduction, growth/apoptosis,
miRNA regulation, and others (Schlesinger et al. 2011;
Schueler et al. 2012). Intriguingly, SRF may mediate
its effects in a stage-specific manner, and may play a
particularly critical role in perinatal CM maturation. In
a recent study, CRISPR/Cas9-driven knockdown of SRF at
p1 led to CM defects in cell size, sarcomeric structure, and
T-tubulation, as well as gene-expression changes related to
mitochondrial biogenesis and oxidative metabolism (Guo
et al. 2018a). SRF may regulate these latter processes in
a multifactorial way – both directly through target gene
binding and indirectly through disruption of overall CM
cytoarchitecture (Schlesinger et al. 2011; Guo et al. 2018a).

MEF2 family

The myocyte enhancer factor 2 family (MEF2) consists
of a family of transcription factors responsible for
regulating a range of processes in cardiac development
and differentiation. The full dynamics of MEF2 isoform
expression is outside the scope of this review and may be
found elsewhere (Desjardins & Naya, 2016). Nevertheless,
we summarize by noting that expression of individual iso-
forms of MEF2 initiates between e7.5 and e8.5 in mice;
postnatally, MEF2A, MEF2C and MEF2D are expressed
(Iida et al. 1999). In the perinatal period, these MEF2
isoforms may have non-overlapping and even potentially
antagonistic function (Desjardins & Naya, 2017). In
particular, MEF2A and MEF2D appear to be required
for cell-cycle inhibition and activation of sarcomeric
gene expression, while MEF2C performs the opposite
function. MEF2A knockout in vivo leads to death within
the first week of life, with mice exhibiting significant
myofibrillar disarray, mitochondrial disorganization, and
failure to activate mature gene expression patterns (Naya
et al. 2002). By contrast, the MEF2D knockout has no
phenotype under physiological conditions, though these
mice display attenuated hypertrophy and remodelling
following application of cardiac stressors (Kim et al.
2008). Intriguingly, while MEF2C has primarily been
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implicated in early cardiac development (Lin et al. 1997),
it may regulate mitochondrial function and oxidative
metabolism during the perinatal period (Desjardins &
Naya, 2017).

Emerging technologies for studying CM
maturation

Elucidating the CM maturation regulatory network
remains a major area of investigation. It is being
appreciated that this network is extraordinarily complex,
comprising not only transcription factors (such as those
discussed above) but other regulatory molecules such
as microRNAs (Kuppusamy et al. 2015; Lee et al.
2015; White et al. 2016; Alfar et al. 2018) and long
non-coding RNAs (Touma et al. 2016), as well as
epigenetic regulation (Schlesinger et al. 2011). Here, we
survey two major scientific tools that we believe will
influence ongoing research in maturation: CASAAV and
transcriptomics.

CASAAV

In vivo analysis of factors regulating maturation has been
limited, owing not only to the challenge of generating
mouse models for a large number of candidates, but

also due to confounding results from secondary effects
of heart failure in knockdown models. The recent
development of the CRISPR/Cas9/AAV (CASAAV)-based
somatic mutagenesis platform may facilitate future in vivo
loss-of-function studies (VanDusen et al. 2017; Guo et al.
2018b). In this system, an AAV9 vector delivers guide
RNAs (under a ubiquitous promoter) and Cre (under a
CM-specific promoter) to Cre-dependent Cas9-P2A-GFP
knock-in mice. Thus, knockdown of target genes is
done in a CM-specific mosaic pattern, enabling the
study of cell autonomous effects of knockdown without
confounding secondary effects. Moreover, the use of the
CRISPR/Cas9 system enables rapid testing of many target
genes. Thus far, this system has been used to study
the cell autonomous effects of a variety of genes in
cardiac maturation, including junctophilin-2 (Guo et al.
2018b), GATA4/6 (Prendiville et al. 2015) and SRF (Guo
et al. 2018a).

Transcriptomics

In addition to novel methods for performing in vivo studies
such as the CASAAV system, improving technologies in
the field of transcriptomics (particularly RNA-sequencing
(RNA-seq)) will enable an improved understanding
of regulatory networks in CM maturation. To date,
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Figure 3. scRNA-seq enables improved understanding of CM maturation
A, scRNA-seq data of CMs at various stages of development reveals that while maturation proceeds in a
stage-specific manner, individual CMs proceed heterogeneously across the maturation trajectory before converging
on the final mature phenotype. B, scRNA-seq profiles may enable more precise benchmarking of PSC-CM
maturation. By comparing individual PSC-CMs to in vivo CM data, their position along the maturation trajectory
can be ascertained and used to quantify a maturation score for single cells. This approach has enabled us to
identify, for example, that PSC-CMs transplanted in vivo achieve a maturation score greater than those cultured
in vitro and comparable with adult CMs (authors’ unpublished data).
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transcriptomic analysis has been used to: elucidate
stage-specific regulatory networks guiding cardiac
development and maturation (Uosaki et al. 2015); identify
nucleosome and histone-modifying genes in maturation
(van den Berg et al. 2015); identify the role of Let-7
family of microRNAs in guiding CM maturation through
metabolic switch (Kuppusamy et al. 2015); and identify
miR-200c as a regulator of mature ion channel expression
and calcium handling (Poon et al. 2018). In concert with
chromatin immunoprecipitation-sequencing (ChIP-seq),
transcriptomic analyses have also been used to develop
a stronger understanding of epigenetic dynamics
of maturation (Sim et al. 2015; Gilsbach et al.
2018). Lastly, transcriptomics has provided a powerful
tool to benchmark the maturation status of in
vitro-generated CM tissues (Kuppusamy et al. 2015;
Uosaki et al. 2015; van den Berg et al. 2015; DeLaughter
et al. 2016).

Single cell RNA-seq (scRNA-seq) represents a major
opportunity for a further understanding of CM
maturation. DeLaughter et al. (2016) performed a semi-
nal study in which they generated scRNA-seq libraries
for > 1,200 cardiac cells from various developmental
time points ranging from e9.5 to p21. They sub-
sequently analyzed the developmental dynamics of
CMs. As expected, they observed distinct stage-specific
progression of maturation, with a notable transition from
e14.5 to e18.5/p0 representing the initiation of peri-
natal maturation. Crucially, however, while transition
states were observable on bulk, there was significant
heterogeneity of maturation state at any given discrete
time point. In particular, between e18.5 and p3, individual
cells spanned an overlapping spectrum of maturation
states before converging to a final mature phenotype
at p21. These results indicate that maturation may
be best viewed at the level of the single cell which,
upon receiving the appropriate cues, proceeds through
maturation at its own unique rate before reaching maturity
(Fig. 3A).

The use of scRNA-seq may additionally provide
a powerful method for benchmarking the precise
maturation state of PSC-CMs (Fig. 3B). Indeed, to date,
one of the primary challenges in PSC-CM research is the
lack of a consensus metric or metrics to precisely quantify
maturation state, particularly with reference to physio-
logical maturation in vivo. scRNA-seq is a particularly
useful tool as it integrates information from the range
of phenomena perturbed in maturation (e.g. sarcomeric,
electrophysiological, metabolic, cell cycle and other
changes). By comparing scRNA-seq profiles of PSC-CMs
to the inferred trajectory of in vivo CM maturation,
the maturation state of PSC-CMs can be quantified in
a biologically meaningful manner. This analysis may
facilitate more comparable and reproducible studies of
CM maturation, and may allow further biological insight

to be gleaned from studies using PSC-CMs as model
systems.

Conclusion

The biology of CM maturation remains a fast-moving
and highly exciting area of research, with emerging
technologies offering new opportunities for insight. Here,
we aim to emphasize the perinatal period as a critical
window for maturation, consisting of interconnected
regulatory modules guiding concommitant structural and
functional maturation of CMs. We believe that new
breakthroughs in understanding CM maturation can be
leveraged towards improving patient health.
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