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A primary limitation in the clinical application of pluripotent stem
cell derived cardiomyocytes (PSC-CMs) is the failure of these
cells to achieve full functional maturity. In vivo, cardiomyocytes
undergo numerous adaptive changes during perinatal maturation.
By contrast, PSC-CMs fail to fully undergo these developmental
processes, instead remaining arrested at an embryonic stage
of maturation. To date, however, the precise mechanisms by
which directed differentiation differs from endogenous development,
leading to consequent PSC-CM maturation arrest, are unknown. The
advent of single cell RNA-sequencing (scRNA-seq) has offered great
opportunities for studying CM maturation at single cell resolution.
However, perinatal cardiac scRNA-seq has been limited owing to
technical difficulties in the isolation of single CMs. Here, we used
our previously developed large particle fluorescence-activated cell
sorting approach to generate an scRNA-seq reference of mouse
in vivo CM maturation with extensive sampling of perinatal time
periods. We subsequently generated isogenic embryonic stem cells
and created an in vitro scRNA-seq reference of PSC-CM directed
differentiation. Through trajectory reconstruction methods, we
identified a perinatal maturation program in endogenous CMs that
is poorly recapitulated in vitro. By comparison of our trajectories
with previously published human datasets, we identified a network
of nine transcription factors (TFs) whose targets are consistently
dysregulated in PSC-CMs across species. Notably, we demonstrated
that these TFs are only partially activated in common ex vivo
approaches to engineer PSC-CM maturation. Our study represents
the first direct comparison of CM maturation in vivo and in vitro at the
single cell level, and can be leveraged towards improving the clinical
viability of PSC-CMs.
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P luripotent stem cell (PSC)-derived cardiomyocytes (CMs)
offer a powerful solution to numerous challenges in clinical

cardiology, with applications including regenerative medicine,
drug screening, and disease modeling (1, 2). However, the
inability of PSC-CMs to mature to an adult-like phenotype
has precluded their effective biomedical use (3, 4). A number
of transcriptomic, proteomic, structural, and functional
measurements have indicated that PSC-CMs more closely
resemble fetal or embryonic CMs rather than their mature
adult counterparts (3, 5–7). While this phenomenon is often
termed a “maturation arrest,” there is little mechanistic
understanding of why PSC-CMs fail to recapitulate the adult
phenotype. It is known that differentiating PSC-CMs faithfully
undergo cascading gene expression changes associated with
gastrulation, mesoderm induction, and cardiomyogenesis
(8, 9). However, it is unclear to what degree they initiate

a maturation-like program in vitro, or when and how this
program is disrupted. This is further complicated by the lack
of knowledge of the initiation, regulation, and dynamics of
CM maturation in vivo (4). To address this, our previous
work aimed to identify a transcriptional landscape for CM
maturation over in vivo development (10). We subsequently
compared the establishment of gene regulatory networks
(GRNs) between PSC-CMs and endogenous CMs. However,
this work was done using bulk samples, while CM maturation
occurs heterogeneously across time both in vivo and in vitro
(5, 11), suggesting a need for further data.

To address the limited maturation of PSC-CMs, a number
of groups have developed ex vivo perturbation protocols to
improve PSC-CMmaturation. These approaches have included
cytokine, growth factor, and hormone cocktails, co-culture
with other cells, induction of physical stimuli (e.g. mechanical
stretch, electrical stimulation), and construction of biomaterial-
based three dimensional tissues (3, 12–16). Ostensibly, the
goal of these perturbations is to replicate fundamental aspects
of the native cardiac milieu to engineer maturation. However,
assessment of the maturation of these perturbed tissues is often
done through ad hoc phenotypic measurements. Additionally,
there has been no systematic comparison of whether these
perturbations activate maturation pathways analogous to
endogenous development. Thus, it is unclear to what degree
any individual perturbation is truly biomimetic. Other groups
have shown that, despite their immature phenotype, PSC-
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CMs may already be capable of modeling specific (albeit
limited) aspects of cardiac biology. This approach has led
to breakthrough applications in drug screening and disease
modeling (17, 18). A deeper biological understanding of CM
maturation processes, however, can significantly expand the
possibilities for future clinical application of PSC-CMs.

In this study, we used single cell RNA-sequencing (scRNA-
seq) to directly compare maturation processes between
endogenous and PSC-derived CMs. Through use of our
previously established large-particle fluorescence-activated
cell sorting (LP-FACS) protocol (19), we established a high
quality reference of mouse CM maturation, in particular
sampling previously understudied perinatal timepoints. We
subsequently generated embryonic stem cell (ESC) lines
from the same strain used for the in vivo reference, and
differentiated these to PSC-CMs to produce an in vitro
maturation reference. We found that endogenous CMs undergo
a perinatal maturation program between postnatal day (p)8-
p15 that is poorly recapitulated in vitro. By cross-referencing
with published human PSC-CM datasets, we identified a
network of nine transcription factors (TFs) whose targets
are consistently dysregulated in PSC-CMs across species.
Through further meta-analysis of published perturbation RNA-
seq datasets, we found that ex vivo perturbations can partially
activate some of the key maturation-related TFs, but no
method completely activates them all. Our study is the first
to provide systematic single cell comparison of maturation
programs between in vivo and in vitro CMs, and may open
future avenues for generating fully mature PSC-CMs.

Results

Trajectory reconstruction identifies perinatal window in
endogenous CM maturation. Our first goal was to develop
an improved understanding of gene expression changes in
CM maturation during in vivo development. scRNA-seq
of CM maturation, in particular postnatal maturation, has
been previously limited due to difficulty in isolating large,
fragile CMs (20). Recently, however, we established LP-
FACS as a viable approach to generate high-quality CM
scRNA-seq libraries (19), and used this technique to produce
a reference dataset of CM maturation (5). In this study, we
expanded our reference to a total of ∼1600 left ventricular
free wall CMs encompassing 15 timepoints ranging from
embryonic day (e)14 to p84 (Supplementary Note 1). We
specifically isolated CMs through use of Myh6-Cre; mTmG
(αMHC x mTmG) mice, in which cells expressing cardiac-
specific myosin heavy chain are readily separated by GFP
expression (Figure 1A). We further validated CM identity of
sequenced libraries through use of the SingleCellNet algorithm
(21), which computationally classifies single cells by gene
expression (Figure S1A). CMs were sequenced to a median
depth of ∼21,000 unique molecular identifiers (UMIs) per
cell and ∼4000 genes per cell. This high-depth sequencing
is particularly important for analyzing CMs undergoing
maturation because of their gradual transcriptomic changes.
Our dataset was designed to encompass the full temporal
range of CM maturation while particularly sampling perinatal
timepoints that may be critical to the maturation process
(4, 22).

To understand the gene expression changes over
CM maturation at the single cell level, we performed

trajectory reconstruction using Monocle 3 (23) (Figure
1B, Supplementary Note 2). Monocle 3 recovered a
unidirectional, non-branching trajectory, matching earlier
reports (5, 11, 24). Trajectory reconstruction enables
calculation of “pseudotime,” a metric of progression along
an inferred biological process. We plotted the Monocle 3-
computed pseudotimes at each biological timepoint, which
validated that pseudotime progressively increased over
biological time (Figure 1C). Notably, however, at each
biological timepoint, there was significant heterogeneity
of pseudotime, indicating that maturation proceeds
asynchronously at single cell level. Additionally, we observed
several interesting transition points. From e14 to e18, there
was a jump in pseudotime marking the initiation of maturation.
Between e18 and p4 (corresponding to pseudotime ∈ [5,20]),
individual cells proceeded through a late embryonic/neonatal
phase of maturation, but the distribution of pseudotimes was
similar at each biological timepoint. Subsequently, there was a
large jump in pseudotime between p8 and p14 (corresponding
to pseuodotime ∈ (20,40]), suggesting a perinatal maturation
process. Finally, after p15 (corresponding to pseudotime ∈
(40, 60]), cells converged to a relatively mature phenotype,
though there was still notable heterogeneity even in these late
stages. Based on these results, we labeled the pseudotime
intervals [0, 20], (20, 40], and (40, 60] as embryonic/neonatal,
perinatal, and adult respectively.

Using Monocle 3, we identified 3015 genes with differential
expression over pseudotime. Over 80% of these genes were
downregulated over pseudotime, which supports our previous
assertion that CM maturation involves significant pruning
of unneeded gene modules (5). As expected, upregulated
genes corresponded to crucial aspects of mature CM biology,
including sarcomeric, calcium handling, and fatty acid
metabolism, while downregulated genes were enriched for
cell cycle and transcription/translation processes (Figure
S1B). We next aimed to identify when maturation genes
become differentially expressed along pseudotime. To do this,
we produced sequential subsets of our inferred trajectory
by binning cells with pseudotime ∈ [0, 1], pseudotime ∈
[0, 2] etc. up to a bin of cells with pseudotime ∈ [0, 60]
(e.g. the entire trajectory). We then computed differential
genes for each subset, to identify what percentage of the
total 3015 differentially expressed genes become differentially
expressed within each progressive subset. 22% of genes
become differentially expressed by pseudotime 20 while 80%
become differentially expressed by pseudotime 40 (Figure
1D). Thus, 58% of genes become differentially expressed within
the perinatal period, further supporting this period as critical
for CM maturation.

As a complementary approach to trajectory reconstruction,
we investigated transcriptional dynamics by computing RNA
velocity using the scVelo package (25). RNA velocity
uses the ratio of spliced and unspliced messenger RNA
reads in scRNA-seq data to determine the rate of gene
expression changes (26). These computed velocities can be
aggregated and projected onto developmental trajectories
to study cell differentiation dynamics. Here, we computed
velocities for our identified differentially expressed genes, and
embedded these velocities on our Monocle 3-inferred trajectory
(Figure 1E). The RNA velocity field pointed along the
maturation trajectory in the embryonic and perinatal phases
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Fig. 1. scRNA-seq data reconstructs a developmental trajectory of in vivo CM maturation. A. Schematic of the experimental workflow for generating in vivo CM libraries.
B. Trajectory inferred by Monocle 3, labeled by timepoint. Arrow indicates direction of pseudotime. C. Pseudotime scores per timepoint for the inferred trajectory. We designated
pseudotime intervals as embryonic/neonatal, perinatal, and adult respectively. D. Percent of the total differentially expressed genes that become differentially expressed within a
pseudotime interval. We subdivided pseudotime into binned subsets of cells and identified differentially expressed genes for each subset. E. RNA velocity stream plot projected
onto inferred trajectory, labeled by timepoint. F. RNA velocity length across Monocle 3-inferred pseudotimes. G. Schematic of the workflow for computing gene dynamics. We
defined the maturation FC as the maximum FC in the pseudotime interval [0, 42], and computed the time to achieve a designated percentage of this FC. H. Average gene
dynamics for each gene cluster, split into upregulated and downregulated genes for each cluster. Clusters were determined based on gene dynamics parameters. I. Gene
dynamics parameters (time to 10%, 50%, and 95% FC) for each cluster. EA = early activation, LA = late activation, with groupings based on the time to 10% FC. J. Number of
upregulated and downregulated genes in each identified cluster. K. TFs whose downstream targets are enriched in each gene cluster. As LA2 has relatively few genes, we
combined LA1 and LA2 and performed enrichment.
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before subsequently becoming more incoherent. The loss
of coherence of the velocity field in later timepoints likely
indicates that these timepoints at dynamic equilibrium with
no clear transcriptional directionality, suggesting completion
of maturation. These results are further supported by
the ratios of spliced to unspliced RNAs, which steadily
decrease over biological time until becoming stable around p15
(Figure S1C). The rate of differentiation can be quantified
by the length of the velocity vector. We found that the
velocity length progressively increased starting at pseudotime
0, reaching a maximum for pseudotime ∈ [20, 40], before
subsequently decreasing (Figure 1F). These results indicate
that endogenously, CM maturation proceeds with highest
velocity in the perinatal phase.

Taken together, our results support the existence of a
perinatal window for CM maturation. Based on this, we
limited our subsequent analysis to the perinatal period by
selecting cells with pseudotime ∈ [0, 42]. We selected 42 as
our upper pseudotime threshold to effectively capture our
identified perinatal window ((20, 40]) plus a small margin of
error. During this period, 2628 genes become differentially
expressed, which we subsequently refer to as maturation genes.

Maturation genes form early-activating and late-activating
clusters with unique upstream regulation. We next sought to
determine and isolate groups of genes that share temporal
expression patterns from embryonic to perinatal stages.
Though some previous methods have been developed for
quantifying gene dynamics along pseudotime trajectories (27),
we instead developed a flexible method using built-in features
of Monocle 3. For each gene, Monocle 3 fits a smooth spline
curve (Figure 1G). We defined the maturation fold change
(FC) as the maximum fold change that happens over this spline
curve in our predetermined pseudotime interval of [0, 42]. We
then identified the time to x% fold change as the pseudotime at
which x% of the maturation fold change is achieved. The x%
used can be calibrated to study different aspects of individual
gene dynamics. For each maturation gene, we computed the
time to 10% FC (gene activation/inactivation), time to 50%
FC (midpoint of gene activity), and time to 95% FC (gene
plateau).

Based on these parameters, we identified 5 gene clusters
(Figure 1H-J, S2, Supplemental Methods). Of these
clusters, three showed time to 10% FC below pseudotime 5.
Thus, we termed these clusters early-activating clusters 1, 2,
and 3 (EA1, EA2, and EA3, respectively). We termed the
remaining two clusters late-activating clusters 1 and 2 (LA1
and LA2, respectively). Our computed gene dynamics allowed
for a better understanding of CM maturation-related gene
changes. Given the prior evidence suggesting the importance
of the perinatal window, we expected that a large number
of maturation genes would initiate their changes at around
pseudotime 20. By contrast, 78% of maturation genes fell
into the early-activating categories, and only LA2 (3.4% of
maturation genes) showed a time to 10% FC near the onset
of the perinatal window. However, apart from EA1, all of
the clusters showed time to 95% FC in the pseudotime range
[30, 40]. In summary, maturation-related gene changes as a
whole likely initiate early. The embryonic/neonatal period is
characterized by completion of the EA1 gene program, while
the perinatal period is characterized by completion of the
EA2, EA3, and LA1 gene programs, as well as initiation

and completion of the LA2 gene program. Notably, these
dynamics are qualitatively different than those seen in cellular
differentiation, which are often driven by “switch-like” genes
(28).

Given the differences in dynamics for each of the gene
clusters, we were curious to know whether different clusters had
different upstream transcriptional regulators. For each cluster,
we performed over-representation analysis of TF targets, and
further investigated TFs with high fold enrichments across the
clusters (Figure 1K). This analysis identified several TFs that
have been previously implicated in CM maturation, including
Srf (29), Err1 (30), Arnt (10), and Mef2 (31, 32), as well as
others with previously undescribed function. Interestingly,
while some TFs showed stage-specific enrichment, a large
number showed enrichment across multiple clusters, despite
different transcriptional dynamics. In particular, inferred
regulators of EA1 as well as the LA clusters often showed
enrichment in other clusters (typically EA2 and EA3). Our
results provide a first description of the timing and regulation
of CM maturation in vivo.

scRNA-seq recovers maturation trajectory in PSC-CMs. Our
next goal was to establish a complementary reference of PSC-
CM maturation. In order to directly compare PSC-CMs to our
in vivo CM trajectory, we generated four separate, isogenic
ESC lines from αMHC x mTmG mice. We subsequently
differentiated these to PSC-CMs using a protocol adapted
from previous studies (33–35), with sequential Wnt modulation
through defined small molecules (Figure 2A). Our rationale
was that by using the same parent mouse line, our comparisons
could minimize effects of confounding caused by strain/line
differences, and isolate biological differences between the in
vivo and in vitro environments.

Differentiation of the ESC lines yielded beating GFP+

PSC-CMs by Day (D)6.5-7 of differentiation, depending
on the line. PSC-CMs additionally displayed other CM
markers such as Tnnt2 and displayed sarcomeric structures
(Figure 2B). We isolated PSC-CMs by conventional FACS
from 8 timepoints between D8 and D45 of differentiation
for scRNA-seq (Supplementary Note 1). Interestingly, at
D25, a population of PSC-CMs emerged with light scattering
properties that seemed to indicate larger cells (Figure S3A,
Supplemental Methods). Based on this, we sorted both
“large” and “normal” size populations at D25, D30, and D45.
We sequenced 660 PSC-CMs to a median depth of ∼11,400
UMIs per cell and ∼3000 genes per cell. SingleCellNet further
validated the cells as having CM identity (Figure S1A).

As with endogenous CMs, Monocle 3 recovered a
unidirectional, non-branching trajectory for PSC-CMs
(Figure 2C, Supplementary Note 3). Pseudotime
progressively but heterogeneously increased over biological
time, with a general transition occurring between D10
and D25 of differentiation (Figure 2D). These general
dynamics were further validated by RNA velocity analysis
(Figure S3B-C). We observed some, albeit minimal, line-
to-line differences in pseudotime progression (Figure S3D).
Interestingly, there appeared to be no major pseudotime
differences between the identified “large” and “normal” cells
(Figure S3E). This may potentially indicate phenotypic
differences in scatter properties that are mediated by non-
transcriptional mechanisms. Nevertheless, given these results,
we treated these cells as identical for our downstream analyses.
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Fig. 2. Trajectory reconstruction enables direct comparison of in vivo and in vitro CM maturation. A. Schematic of experimental workflow for generating PSC-CM
libraries. B. Myh6-mG and Tnnt2 immunofluorescence of PSC-CMs. Right image shows a one sample PSC-CM, with clearly visible sarcomeric structure. C. Trajectory
inferred by Monocle 3, labeled by timepoint. Arrow indicates the direction of pseudotime. D. Pseudotime scores per timepoint for the inferred trajectory. E. Gene ontology
analysis of genes differentially expressed across the PSC-CM trajectory. F. Combined in vivo CM and PSC-CM trajectories inferred by Monocle 3, labeled by timepoint. G.
Combined in vivo CM and PSC-CM trajectories with group differences explicitly treated as a batch effect by mnnCorrect, inferred by Monocle 3 and labeled by timepoint. H.
Pseudotime scores per timepoint for the combined trajectory in 2G. I. Combined in vivo CM and PSC-CM trajectories with group differences implicitly treated as a batch effect
by mnnCorrect, inferred by Monocle 3 and labeled by timepoint. J. Pseudotime scores per timepoint for the combined trajectory in 2I. K. Transcriptomic entropy for in vivo CMs
and PSC-CMs across timepoint.
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We identified 449 differentially expressed genes over the PSC-
CM trajectory. These genes were enriched for terms related
to cardiac structure, contractile function, electrophysiology,
and metabolism (Figure 2E). Taken together, these results
validate the successful reconstruction of a PSC-CM maturation
trajectory.

PSC-CMs are transcriptional nearest neighbors to
embryonic/neonatal CMs. Having reconstructed trajectories
for both in vivo and in vitro CM maturation, we next
sought to align the trajectories to determine how PSC-CMs
compared to their in vivo counterparts. We combined the
two sets of cells and performed trajectory reconstruction
(Supplementary Note 4). To our surprise, the in vivo CM
and PSC-CM trajectories remained completely separate, and
failed to align (Figure 2F). This initial result suggested
significant global gene expression differences between the two
groups of CMs, despite common genetic background.

To overcome this issue, we made use of properties of
mnnCorrect (36), which is the default batch correction
algorithm implemented in Monocle 3. mnnCorrect projects
cells onto a reference batch by identifying mutual nearest
neighbors between the batches, and correcting differences
between mutual nearest neighbor pairs. We used mnnCorrect
to align the in vivo and in vitro trajectories in two separate but
similar approaches. In the first approach, we set the group (e.g.
in vivo/in vitro) to be a batch effect to be corrected (Figure
2G-H); thus, mnnCorrect explicitly looked for mutual nearest
neighbors between the groups of cells. In the second approach,
we set the reference batch to be a batch containing only in
vivo CMs (Figure 2I-J). This implicitly treats the group
as a batch effect by again forcing PSC-CMs to be projected
onto in vivo CMs. Both approaches make the assumption
that group differences are either driven by technical artifacts
or by biological phenomena that are not of interest. This
assumption is likely to be incorrect - indeed, global expression
differences may be directly biologically relevant to the poor
maturation status of PSC-CMs (which we consider below).
Nevertheless, this assumption was appropriate for the initial
goal of identifying an approximate alignment between the
endogenous CM and PSC-CM trajectories.

Both approaches yielded successful integration of the in
vitro and in vivo CM trajectories (Figure 2G-J). Notably,
in both approaches, the vast majority of PSC-CMs showed
pseudotime score similar to endogenous CMs from e18-p4
(e.g. the embryonic/neonatal period). While some PSC-CMs
appeared to enter into the perinatal phase of maturation,
nearly no PSC-CMs successfully achieved an adult phenotype.
This result is in line with the hypothesis that the previously
identified perinatal phase of CM maturation is somehow
disrupted in PSC-CMs, leading to their immature phenotype.

As a complementary approach to trajectory reconstruction,
we also used our previously developed transcriptomic entropy
metric (5) to stage the PSC-CMs. This metric is based
on the observation that immature cells display a broader,
more promiscuous gene expression profile, which subsequently
narrows as the cells mature. Thus, immature CMs will
display a high transcriptomic entropy, while mature cells will
show a lower transcriptomic entropy. Our previous work
optimized this metric to enable direct comparisons across
multiple datasets while being robust to technical batch effects.
Here, transcriptomic entropy of the PSC-CMs was generally

high and corresponded to that of embryonic/neonatal CMs,
with very few PSC-CMs demonstrating lower transcriptomic
entropy than p8 CMs (Figure 2K). These results provide
a trajectory reconstruction-independent validation of our
above results. Additionally, these results corresponded well
with our previous analysis of transcriptomic entropy in
human PSC-CMs. Taken together, our data supports the
embryonic/neonatal maturation status of PSC-CMs.

PSC-CMs show global expression differences from
endogenous CMs. As a first step in understanding the
immature phenotype of PSC-CMs, we sought to determine
the global gene expression differences that led to complete
separation of the in vivo and in vitro trajectories. To this
end, we tested for differential gene expression between all
in vivo CMs and PSC-CMs (Figure 3A). This identified
2906 differentially expressed genes. 1460/2628 (56%) of
our previously identified maturation genes showed global
gene expression differences, suggesting significant differences
between in vivo and in vitro CMs. However, one explanation
for this could be that this comparison includes mature
endogenous CMs, and thus we are simply capturing the
immaturity of PSC-CMs. We therefore tested for differential
gene expression between early stage CMs (defined as in
vivo pseudotime ∈ [0, 15]) and PSC-CMs (Figure 3A).
This yielded 1743 differentially expressed genes, with
1017/2628 (39%) of maturation genes falling into this category.
Thus, PSC-CMs showed global expression differences even
when compared to endogenous CMs identified as their
transcriptional nearest neighbors.

Gene ontology analysis of globally differentially regulated
genes identified terms corresponding to CM maturation
(Figure S4A). Genes associated with sarcomeric structure,
oxidative phosphorylation, fatty acid metabolism, and calcium
handling were generally expressed at higher levels in vivo,
while genes associated with proliferation/cell cycle, stemness,
and transcription/translation were higher in PSC-CMs. We
further investigated expression differences in major sarcomeric,
mitochondrial, and ribosomal genes (Figure 3B). In general,
sarcomeric proteins and mitochondrial-related transcripts
(e.g. mitochondrially-encoded proteins, electron transport
proteins, and ATPases) were more highly expressed in vivo,
while ribosomal protein-coding transcripts were more highly
expressed in PSC-CMs. Notably, while PSC-CMs expressed
both ventricular myosin light chain genes (Myl2, Myl3 ) and
atrial genes (Myl4, Myl7 ), they expressed the former pair at
a much lower level than in vivo CMs and the latter pair at
a much higher level. This is complicated by the fact that
endogenous ventricular CMs express Myl4 and Myl7 during
embryonic stage. Thus, these results may indicate a more
“atrial-like” phenotype for PSC-CMs, but they may also reflect
a general inadequacy in using these markers to classify CMs
(12). Additionally, PSC-CMs showed comparatively higher
expression of the immature Troponin I isoform Tnni1 and
lower expression of the mature isoform Tnni3.

On the surface, these results seem to reiterate the immature
phenotype of PSC-CMs. However, we observed that PSC-CMs
do not just demonstrate immature-like gene expression levels.
Rather, their absolute gene levels often fall entirely outside the
spectrum of endogenous development. To quantify this, we
scaled all of the maturation genes such that 0 corresponded to
the lowest level over in vivo maturation, while 1 corresponded
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Fig. 3. PSC-CM maturation shows both absolute and relative gene expression differences compared to endogenous maturation. A. Number of in vivo maturation
genes that show global expression differences when comparing all in vivo CMs to PSC-CMs (top) or early stage CMs (e.g. in pseudotime interval [0, 15]) to PSC-CMs.
B. Heatmap of candidate sarcomeric, mitochondrial, and ribosomal genes showing global expression differences between in vivo and PSC-CMs. Pseudotime units are in
increments of 5, based on the individual trajectories for each group (e.g. Fig 1B for in vivo CMs and 2C for PSC-CMs). C. Histogram of scaled PSC-CM expression levels of
in vivo maturation genes. We scaled expression levels by setting 0 as the lowest level across in vivo pseudotime and 1 as the highest level across in in vivo pseudotime.
D. FC of maturation genes in vitro vs in vivo, compared for embryonic/neonatal timepoints (e.g. [0, 20], left) and perinatal timepoints (e.g. [0, 40], right). Points are labeled
by whether the gene is also differentially expressed in PSC-CMs. E. Venn diagrams of differentially expressed genes across pseudotime in vivo and in vitro. F. Percentage
of maturation genes in each pseudotime subset (as in Fig 1D) correctly differentially regulated in mouse PSC-CMs. G. Percentage of genes in each identified gene cluster
correctly differentially regulated in mouse PSC-CMs. H. Percentage of maturation genes in each pseudotime subset (as in Fig 1D) correctly differentially regulated in human
PSC-CMs for four studies. I. Percentage of genes in each identified gene cluster correctly differentially regulated in human PSC-CMs for four studies.
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to the highest level. We then normalized the average PSC-
CM gene expression of the maturation genes by this same
scaling. Notably, 1186/2628 genes (45%) fell outside the range
of [0, 1] (Figure 3C). Strangely, many genes showed lower
overall expression levels in PSC-CMs, even if those genes
were downregulated during endogenous maturation. Gene
expression levels for in vivo and in vitro CMs may thus fall
into two entirely different biological scales. These results
highlight the challenge of comparing between the in vivo and
in vitro contexts – direct comparison of absolute gene levels
may be difficult or even impossible.

PSC-CMs poorly recapitulate perinatal CM maturation-related
gene changes. As expression levels may be on differently
calibrated biological scales for in vivo and in vitro CMs, direct
comparison of expression levels may not yield insights into
the dysregulation of maturation in vitro. Thus, we proceeded
with a different approach by drawing insights from a previous
study from our group (37). There, we sought to compare first
and second heart field progenitor cells isolated from in vivo
embryos and in vitro precardiac organoids by RNA-seq. While
absolute expression levels corresponded poorly between the
in vivo and in vitro samples, the directionality of differences
in marker genes between first and cell heart field cells was
well preserved. Applying that lesson here, rather than viewing
the absolute gene expression levels of the adult CM as the
gold standard, we focused instead on the directionality of gene
changes from immature to mature CM. We could then see how
well these relative changes were recapitulated in PSC-CMs.
This approach enabled comparison between the in vivo and in
vitro CM maturation trajectories without the need to directly
compare expression levels.

We first computed the FCs for all of the maturation genes
across the in vivo trajectory, both in the pseudotime interval [0,
20] (encompassing the embryonic/neonatal period) and in the
interval [0, 40] (encompassing both the embryonic/neonatal
and perinatal periods). We then compared these against the
FCs of the maturation genes across the in vitro trajectory.
Notably, for genes that were differentially expressed both in
vivo and in vitro, FCs were generally comparable (Figure 3D).
However, only 10% of maturation genes were differentially
expressed in the same direction in PSC-CMs (Figure 3E).
This data supports the failure of PSC-CMs to successfully
recapitulate the majority of maturation-related gene changes.

We next used our approach from Figure 1D to determine
which maturation genes are best recapitulated in vitro. We
quantified what percent of differentially expressed genes within
each pseudotime subset are also differentially expressed in the
same direction in vitro. While recapitulation in generally
poor, genes that become differentially expressed during the
embryonic/neonatal period were more likely to be correctly
differentially expressed in vitro (Figure 3F). For example,
37% of genes differentially expressed from [0, 10] in vivo are
correctly differentially expressed in vitro, and 28% of genes
differentially expressed from [0, 20] in vivo are captured in vitro.
However, this number drops to 11% for genes differentially
expressed from [0, 40]. The sharp drop-off after in vivo
pseudotime 20 (corresponding to the start of the perinatal
phase) demonstrates that PSC-CM maturation is particularly
poor at recapitulating perinatal maturation-related changes.

We further quantified what percentage of genes in the
identified in vivo clusters are correctly recapitulated in vitro.

By far, genes from EA1 are best recapitulated in PSC-CMs,
while less than 10% of genes in EA2, EA3, and LA1 are
correctly differentially expressed in vitro (Figure 3G). Most
strikingly, only 1.1% of LA2 genes are captured in vitro. In
summary, PSC-CMs undergo a subset of embryonic/neonatal
maturation changes, but fail to undergo the perinatal program.
This may in turn point to their phenotypic arrest.

Human PSC-CMs show poor recapitulation of perinatal CM
maturation-related gene changes. Given the importance of
PSC-CM technology for applications in human health, we
next investigated maturation-related changes in human PSC-
CMs. In our previous study, we found that, similar to mouse
PSC-CMs, human PSC-CMs appear to have a maturation
state similar to fetal CMs and appear arrested at the onset of
perinatal maturation (5). Here, we focused on four published
datasets of CMs generated from induced PSCs – Friedman,
Nguyen, and Lukowski et al. (38) (FNL); Churko et al. (39)
(C); Gerbin, Grancharova, Donovan-Maye, and Hendershott
et al. (40) (GGDH); and Ruan and Liao et al. (41) (RL).
We initially aimed to perform trajectory reconstruction with
Monocle 3 as done with the mouse PSC-CMs. However, none of
the datasets formed a smooth, continuous trajectory but rather
showed discrete separation of timepoints (Figure S4B). In
each of these datasets, samples from individual timepoints were
typically prepared as separate batches, and thus batch and
timepoint were confounded. Thus, it was difficult to resolve
potential batch effects to create an appropriate trajectory.
As a work-around, we applied our transcriptomic entropy
approach, which we previously showed can also function
as a surrogate pseudotime (5). Transcriptomic entropy
largely recapitulates similar differentially expressed genes as
commonly used trajectory inference methods while being
generally resistant to batch effects. Through this method,
we identified differentially expressed genes for each of the four
datasets.

As with the mouse PSC-CMs, we compared the
directionality of changes in maturation genes for the human
PSC-CMs against our in vivo data. This approach
fundamentally assumes that maturation-related changes are
comparable across human and mouse. Whether this universally
holds requires further assessment; however, in the absence of
comprehensive perinatal human CM scRNA-seq data, our
assumption served as a useful first approximation. We found
that, while several of the human datasets performed better
than the mouse PSC-CMs in recapitulation of maturation
genes, all showed a sharp drop-off in correct recapitulation
at the onset of the perinatal period (Figure 3H). Likewise,
while the datasets performed better in terms of recapitulating
genes in the EA2 and EA3 clusters, the LA1 and LA2 clusters
were still relatively poorly captured (Figure 3I). The one
exception to this observation was the GGDH dataset, which
appeared to perform poorly in general, though this may also
be for technical reasons owing to the lower depth/sensitivity
of that study. As a whole, however, the data indicates that
human PSC-CMs similarly fail to undergo perinatal programs
associated with CM maturation.

A network of nine TFs underlies dysregulation of PSC-CM
maturation. Given that the poor PSC-CM maturation
phenotype can be seen across multiple lines and protocols
from several species, we hypothesized that there is a
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conserved mechanism underlying maturation failure in PSC-
CMs. Commonly dysregulated genes across multiple studies
may point to a source for disruption of perinatal maturation
programs. We thus identified dysregulated genes for the mouse
PSC-CMs generated in this study as well as the four literature-
obtained human PSC-CM datasets (Figure 4A). We used
the following criteria to classify a gene as dysregulated: either
upregulated in vivo but not in vitro, or downregulated in
vivo but not in vitro AND expressed in vitro. The latter
criterion allowed us to eliminate genes downregulated in vivo
but already not expressed in vitro, as these genes are less likely
to be relevant to maturation failure. We generated a consensus
human list by including genes dysregulated in at least three
of the four literature datasets. This list was intersected with
the dysregulated genes from the mouse dataset to generate
a final list of 550 genes dysregulated across the studies and
across species.

The consensus dysregulated gene list was notably enriched
for genes differentially expressed during the perinatal period in
vivo (Figure 4B). Similarly, the time to 10% FC, time to 50%
FC, and time to 95% were all higher for the dysregulated genes
compared to correctly recapitulated genes (Figure S4C).
Lastly, the consensus dyresgulated gene list was enriched
for genes from the LA clusters, with 33% and 42% of

genes from LA1 and LA2 dysregulated respectively. These
results are in line with our hypothesis that the perinatal
period of maturation is particularly disrupted in PSC-CMs.
We additionally investigated the chromatin accessibility of
the dysregulated genes compared to correctly recapitulated
genes by analysis of three previously published ATAC-seq
datasets of human PSC-CMs at D15, D25, and D30 (42–
44). The percentage of dysregulated genes with peaks in the
promoter-TSS region was marginally lower than for correctly
recapitulated genes (67% vs 72%) (Figure S4D); however,
this difference is unlikely to be biologically relevant. This
suggests that dysregulated genes show a similar level of
chromatin accessibility to correctly recapitulated genes.

Given the similarity in chromatin accessibility, we next
aimed to identify upstream factors that could be responsible
for gene dysregulation in PSC-CMs. As before, we performed
over-representation analysis to identify TFs whose targets are
particularly highly represented in the consensus dysregulated
gene list. Using affinity propagation to eliminate redundancy
(Supplemental Methods), we narrowed down the identified
TFs to a list of 9 candidate TFs (Figure 4C). We refer to
these TFs from here as dyregulated maturation TFs. Many
of the dysregulated maturation TFs were identified as being
important regulators of in vivo CM maturation in our above

Fig. 4. Perinatal maturation programs are dysregulated in PSC-CMs. A. Workflow for identifying dysregulated genes in each PSC-CM dataset. B. Percentage of maturation
genes in each pseudotime subset (as in Fig 1D) dysregulated in PSC-CMs. C. Percentage of genes in each identified gene cluster dysregulated in PSC-CMs. D. TFs whose
downstream targets are enriched in the consensus dysregulated gene list. E. Scaled expression of identified dysregulated TFs in vivo and in PSC-CMs. Pseudotime units are in
increments of 5, based on the individual trajectories for each group (e.g. Fig 1B for in vivo CMs and 2C for PSC-CMs). The corresponding protein-gene names are: AP1FJ
(Jun), NRF2 (Nfe2l2), ERR1 (Esrra). F. IPA activity scores for identified dysregulated TFs in vivo and in PSC-CMs. Note that SOX9 was not included as an activity score was
not assigned by IPA.
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analysis (Figure 1K). Additionally, almost all have been
previously directly implicated in either CM differentiation,
maturation, or disease response (11, 29–32, 45–51). The
STRING protein database identified significant connectivity
between these TFs (Figure S4E), with a protein-protein
interaction enrichment p-value of 1.75 × 10−8. Thus, the
identified TFs likely work as a regulatory network to mediate
CM maturation; disruption of this network may underlie
maturation failure in vitro.

The disruption of our identified TF network could occur at
multiple stages, including at the gene expression, protein level,
or protein activity levels. As a first step, we investigated the
transcriptional levels of each of the dysregulated maturation
TFs in our paired in vivo and in vitro CMs (Figure 4E). In
vivo, all were expressed early in maturation. Subsequently,
some decreased in level over the maturation process (Yy1,
Jun, Nfe2l2, Sox9, Nrf1, Mef2a), while others remained
expressed at a relatively constant level (Srf, Ppara, Essra).
However, in PSC-CMs, nearly all showed much lower levels
compared to in vivo CMs, particularly at the start of in
vitro maturation. This supports the possibility of network
failure at the gene expression stage. However, as discussed
earlier, it is also possible that in vivo and in vitro CMs have
different scales of expression, complicating direct comparison
of expression levels. As an alternate comparison, we used
Ingenuity Pathway Analysis (IPA) to infer TF activity. IPA
infers activity based on fold changes of downstream genes
compared against known literature interactions (52). Using
IPA, we found that all dysregulated maturation TFs, with the
exception of PPARA, showed either weaker or reversed activity
over PSC-CM maturation as compared to in vivo maturation
(Figure 4F). Our results support the hypothesis that these
dysregulated maturation TFs play a role in the failure of
PSC-CMs to undergo perinatal maturation programs.

Ex vivo perturbations only partially activated dysregulated
maturation TF network. A number of cellular and tissue
engineering methods have been proposed to improve PSC-
CM maturation. However, in the absence of knowledge about
in vivo maturation or the nature of PSC-CM maturation
dysregulation, it has been difficult to assess how biomimetic
these methods are. In particular, while these methods
may impact some functional characteristics associated with
maturing CMs, the mechanism of these changes may be
different than endogenous maturation. Our findings here
provide a useful for framework for investigating the effects
of ex vivo perturbations. If a particular perturbation indeed
improves PSC-CM maturation in a biomimetic manner, then
the direction of gene changes between perturbed vs control
tissue should match the direction of changes during in vivo
maturation.

To this end, we identified six publicly available RNA-seq
datasets spanning eight different perturbations of PSC-CMs
(53–58) (Figure 5A). For each, we identified differentially
expressed genes between the provided experimental and
control groups, and intersected these genes against our
identified maturation genes (Figure 5B). Notably, for
most of the perturbations, a majority of the identified
differentially expressed genes matched the direction of in
vivo CM maturation. However, a large number (average
of ∼38% of genes across the 8 studies) were differentially
expressed in the opposite direction. While these may represent

genes further dysregulated by perturbations, they may also
reflect differences in species as well as differences in technical
conditions across all of the different studies (e.g. timepoints,
isolation protocols, degree of cellular purity). Thus, we
focused our analysis on genes that were differentially regulated
in the same direction between perturbations and in vivo
maturation. Of these genes, we found that ∼30-50% were
already correctly differentially expressed over control PSC-
CM maturation in our previously identified datasets (Figure
5C). However, ∼10-25% of differentially expressed genes
came from our consensus dysregulated gene list. Thus, while
perturbation methods predominantly impact genes that are
already being correctly differentially expressed in vitro, they
may also “correct” previously dysregulated genes.

For most perturbations, the identified differentially
regulated genes were typically enriched in the
embryonic/neonatal timepoints (Figure 5D), and enriched
in genes from EA1 (Figure 5E). This suggests that most
perturbations predominantly continue to activate early stage
gene changes without affecting the dysregulated perinatal
phase. However, some perturbations proved to be exceptions
to this general rule. In particular, long term culture (LTC)
and engineered microtissues (EMT) appeared to show
prominent enrichment of LA1 and LA2 compared to EA1
within the same study, potentially indicating that these
methods may be better at improving maturation in PSC-CMs.

To further investigate how perturbations affect PSC-
CM dysregulation, we looked at changes to our identified
dyregulated maturation TFs. We looked at two parameters
– whether the TF itself was upregulated by the perturbation
(Figure 5F), as well as whether downstream targets of the
TF were enriched in the differentially expressed genes of
that perturbation (Figure 5G). The two methods show
decent but not complete overlap in results. This may
indicate that some methods work through post-transcriptional
methods of TF activation, though they may also reflect
differences in underlying computational assumptions between
the methods. Notably, electrical stimulation (ES) showed the
most prominent transcription-level changes to dysregulated
maturation TFs, while LTC and EMT showed the largest
effect on downstream targets. However, while each method
was able to activate some of the dysregulated TFs, no method
could completely activate them all. This suggests an inherent
limitation in the ability of current ex vivo approaches to fully
overcome the PSC-CM maturation deficit.

Discussion

Here, we used scRNA-seq to identify developmental processes
associated with CM maturation. In particular, for the first
time, we reconstructed a high-quality trajectory of in vivo CM
maturation with significant sampling of perinatal timepoints.
While gene trends associated with CM maturation initiate
early (∼e18.5), CMs undergo a perinatal phase (p8-p15) during
which the rate of transcriptional changes is at its highest and
most genes progress to their mature levels. Through trajectory
comparison, we found that this perinatal phase is largely not
recapitulated in PSC-CMs. We identified a network of nine
TFs upstream of dysregulated genes in PSC-CMs; these TFs
consistently showed lower expression and disrupted activity in
vitro. Our study thus provides a transcriptional underpinning
for the poor PSC-CM maturation state.
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Fig. 5. Perturbation methods to engineer PSC-CM maturation activate some, but not all, of the dysregulated maturation TFs. A. Characteristics of studies and
perturbations analyzed. B. Number of maturation genes showing differential change in the same direction following perturbation as in vivo maturation. Only genes differentially
regulated in the same direction were analyzed in further steps. C. Percentage of genes differentially regulated in each study in same direction as in vivo CMs that fell into either
the “correctly differentially regulated” or “dysregulated” categories in unperturbed PSC-CMs. D. Percentage of maturation genes in each pseudotime subset (as in Fig 1D)
correctly differentially regulated for each perturbation method. E. Percentage of genes in each identified gene cluster correctly differentially regulated for each perturbation
method. F. Plot of which dysregulated maturation TFs are upregulated by each perturbation method. G. Heatmap of dysregulated maturation TFs whose downstream targets
are enriched in the correctly differentially expressed gene lists for each perturbation method.

Kannan et al. bioRxiv | January 30, 2021 | 11

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 31, 2021. ; https://doi.org/10.1101/2021.01.31.428969doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.31.428969
http://creativecommons.org/licenses/by-nc/4.0/


Additionally, by surveying published datasets of ex vivo
perturbations, we found that no method can fully activate
all of the identified TFs. To date, the mechanisms by which
ex vivo perturbations affect CM biology is often unclear, and
maturation is often assessed based on ad hoc measurements.
Thus, it is possible that these methods work through non-
developmentally mimetic mechanisms. We believe that for
optimal engineering of PSC-CMs, in vivo development must
be viewed as the gold standard. Our results emphasize the
importance of comparing perturbations directly to endogenous
CMs to establish claims of cellular maturation.

CM maturation continues to remain a somewhat poorly
understood phenomenon. For example, it is not fully
clear what triggers initiate maturation. Our trajectory
reconstruction indicates that maturation processes begin in
utero, in line with previous findings (4, 59). Thus, it is
unlikely that birth, and its accompanying hemodynamic and
metabolic changes, is the initial driver of CM maturation,
though these changes may play a subsequent role. The role
of various neuroendocrine cues must be further studied here,
as glucocorticoids, thyroid hormone, IGF1, and NRG1 all
show spikes in the late embryonic period (60–63). Likewise,
while we identified TFs that regulate various clusters of genes
through embryonic and perinatal maturation, it is not clear
what stimulates activation of these TFs. The analysis of ex
vivo perturbations, however, can provide biological insight here.
For example, perturbations like stretch, electrical stimulation,
anisotropic patterning, and others activate maturation-related
TFs in partially but not completely overlapping fashion. Thus,
maturation TFs may both regulate and be regulated by
biophysical changes occurring in the pre- and post-natal heart.
Another point of interest is the overlap in upstream TFs across
gene clusters with different temporal dynamics. Future studies
should more thoroughly identify how common TFs can mediate
different expression dynamics, for example through differences
in chromatin accessibility, binding affinity, or co-localized TFs.

We identified nine TFs that are likely to underlie maturation
failure in PSC-CMs. Interestingly, the dysregulated targets
of these TFs show similar chromatin accessibility compared
to correctly differentially expressed genes. However, the
expression levels of each of the maturation TFs is much
lower in vitro than in vivo. Thus, correcting the expression
levels of these TFs provides a putative target for future
genetic engineering efforts to improve PSC-CM maturation.
Intriguingly, these TFs display significant known interactions
with one another, potentially suggestive of a regulatory
network for CM maturation. One consequence of this
observation is that it is unlikely that upregulation of any one
TF alone will induce maturation. Indeed, a recent study found
that upregulation of SRF in neonatal CMs led to disruption of
maturation (29). Thus, balanced and controlled gene dosages
are likely necessary for these TFs to effect maturation. We
anticipate that a reprogramming-type approach, featuring
concomitant upregulation of multiple dysregulated maturation
TFs, will enable future generation of mature PSC-CMs.

Our findings here are based on several assumptions that
must be considered critically. In comparing the in vivo and
in vitro trajectories, a fundamental assumption is that all
gene changes that occur over endogenous maturation must
be associated with or required for completion of maturation.
However, many identified differentially expressed genes may

be inessential. Indeed, we were surprised to note that many
downregulated genes in vivo already present with a lower
expression in vitro. Though we filtered many of these genes
from our identified consensus dysregulated list, other genes
may similarly be dispensable for maturation. While our study
is not equipped to identify such genes, the emergence of
improved screening methodologies may help better refine the
core gene dynamics of CM maturation in the future (64).

A second assumption was that gene trends across
maturation should be generally comparable across multiple
datasets. This assumption is reasonable for comparing mouse
endogenous CMs and PSC-CMs generated within the same
study, as done here. However, whether this assumption
holds for our various meta-analyses must be considered more
carefully. For one, it is not fully clear whether CM maturation
trends must be preserved across species. While recent results
from Cardoso-Moreira indicate that developmental trends
between species are often divergent (65), the results from
Uosaki et al. suggest that CM maturation in particular is
relatively well-preserved (66). Both sets of studies were done
using bulk cardiac data, and scRNA-seq data is currently
unavailable for human perinatal timepoints. Thus, while
our approach functions as a useful first approximation of
studying PSC-CM dysregulation, there is also a need for
better resolution human data to further validate our findings.
Likewise, there are generally few well-controlled scRNA-seq
studies of ex vivo perturbations to improve CM maturation.
We anticipate that future datasets can provide better insight
into the molecular pathways by which specific perturbations
impact CM maturation.

Thirdly, our study primarily focused on transcriptional
mechanisms of CM maturation and PSC-CM dysregulation.
However, there is plenty of evidence to implicate post-
transcriptional processes in CM maturation. For one, we
observed that CMs achieve a largely maturation transcriptome
by p15-p18. However, protein-level changes continue to
occur after this time, and CMs do not achieve their maximal
volume until approximately three months of age in mice (67).
Moreover, protein-protein interactions at the cell membrane
and with the extracellular matrix mediate important changes in
postnatal CM biology (68, 69). We expect that the emergence
of improved proteomics methods, including single cell
proteomics, will enable better resolution of post-transcriptional
maturation processes (7, 70). Nevertheless, our results make
it clear that CM maturation is associated with large-scale
transcriptional changes, and that these changes are not fully
recapitulated in vitro. Thus, it is likely that transcriptional
mechanisms are necessary, though perhaps not sufficient, for
successful CM maturation.

Despite these assumptions, we believe this study takes
the first steps towards understanding the nature of PSC-
CM maturation failure by direct comparison to endogenous
developmental processes. These findings can serve as a launch
point for future efforts to improve the clinical applicability of
PSC-CMs.

Materials and Methods

All methods, including wet lab and computational methods, can
be found in the Supplementary Information. Raw data for the
maturation reference can be found on GEO at GSE164591. Code
to generate figures in this manuscript as well as the counts tables
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for the datasets analyzed in this manuscript can be found on
Github at https://github.com/skannan4/cm-dysregulation,
and further files can be found on Synapse
(https://www.synapse.org/#!Synapse:syn23667436/files/).
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Supporting Information Text

The purpose of our supplementary materials section is to provide detailed information about our study that was not included
in the main manuscript text. We aspire to standards of data reproducibility and availability. To this end, all of the sequencing
data for this study can be found on GEO with accession number GSE164591. Additionally, the code to reproduce all of the
figures in the manuscript is available on Github at https://github.com/skannan4/cm-dysregulation. Lastly, we have made an
R workspace available on Synapse (https://www.synapse.org/#!Synapse:syn23667436/files/) that contains many of the data
tables pre-loaded for our analysis. If there are other materials that could facilitate re-analysis or exploration, we would be glad
to provide them on inquiry.

The supplementary materials here contain methods and notes. The supplementary methods provide details for our mouse
handling, cell isolation, and sequencing. We also provide rough information on the computational methods used, though we
direct readers directly to the code for more involved details. The supplementary notes delve into our library preparation design
as well as an overview of how our trajectories were reconstructed in Monocle 3. Again, for more detail, we encourage readers to
directly examine the code.

Supplementary Methods

Mice and PSC-CM lines. To generate mice for our reference dataset, we crossed B6.FVB-Tg(Myh6-cre)2182Mds/J mice (αMHC-
cre, Jackson Laboratory, Stock No. 011038) with B6.129(Cg)-Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J (mTmG, Jackson
Laboratory, Stock No. 007676). Both mice have C57BL/6J congenic background. To generate mESCs for in vitro studies,
mice of the above strain were crossed and observed for the presence of a vaginal plug (considered embryonic day 0.5). On
embryonic day 3.5, blastocysts were flushed, isolated, and maintained in pre-gelatinized 96 well plates with 2i media. Four
genotype-verified mESC lines were expanded and tested for differentiation capability to the cardiomyocyte lineage. All animals
were maintained compliant to protocols by the Johns Hopkins Animal Care and Use Committee.

CM Isolation. For isolation of CMs from e14-p4 timepoints, we used the neonatal cardiomyocyte isolation kit from Miltenyi
Biotec in conjunction with the gentleMACS Dissociator. For later timepoints, we performed Langendorff isolation of CMs. We
prepared the following buffers:

• Perfusion buffer: 120 mM NaCl, 5.4 mM KCl, 1.2 mM NaH2PO4 , 20 mM NaHCO3, 5.5 mM glucose, 5 mM BDM, 5 mM
Taurine, and 1 mM MgCl2 , adjusted to pH 7.4

• Digestion buffer: 40 mL Perfusion buffer plus 35.8 mg Collagenase Type II (Worthington CLS-2), 3 mg Protease (Sigma
P5147)

• Tyrode’s buffer: 140 mM NaCl, 5 mM KCl, 10 mM HEPES, 5.5 mM glucose, and 1 mM MgCl2, adjusted to pH 7.4

We used a horizontal (i.e. non-hanging) Langendorff apparatus with a chamber filled with perfusion buffer. To perform
isolation, we first performed isofluorane anaesthesia on non-heparinized mice. Mice were observed until clearly anaesthetized
and unresponsive to toe pinch, and subsequently euthanized by cervical dislocation. The heart was then rapidly excised from
the chest and cannulated to the Langendorff apparatus. Flow time and rate of flow were dependent on the age of the mouse
and were typically judged based on completeness of digestion to touch. Subsequently, the left ventricular free wall was excised
and minced. We filtered isolated cells through a 100 µM screen to eliminate large tissue chunks, spun down at 800 RPM for 1
minute (Eppendorf centrifuge 5702), and resuspended cells in 10 mL Tyrode’s buffer.

PSC-CM Differentiation. Our PSC-CM differentiation protocol was adapted from multiple previously published protocols. The
day prior to initiation of differentiation protocol (D-1), cells were changed to expansion media with 1000 U Lif/mL with no
CHIR99021 or PD0325901. On Day 0 of differentiation, cells were dissociated with TrypLE (Thermo Fisher) and suspended in
a serum-free differentiation media (SFD). SFD was composed of 3

4 volume IMDM to 1
4 volume Ham’s F12 media, with 0.5% v/v

N2 supplement (Gibco), 1% v/v B27 without retinoic acid (Gibco), 0.5% v/v BSA (Invitrogen) in PBS, 0.75% v/v glutamine
(Gibco), 0.75% v/v penicillin-streptomysin (Gibco), 50 µg/mL ascorbic acid (Sigma), and 0.039 µl/mL 1-thiogylcerol. For the
first four days of differentiation, differentiating cells were maintained as embryoid bodies. On Day 2, media was replaced with
fresh SFD plus 3µM CHIR99021 (Selleckchem) and 2.5 ng/mL BMP4 (R&D Systems). On Day 4, cells were dissociated with
TrypLE and replated as a confluent monolayer on gelatin-coated flasks. At this time, cells were cultured with SFD with 0.1%
v/v XAV939. On Day 6, the media was changed to SFD. From Day 10 to Day 13, lactate selection was performed by culturing
the cells in DMEM without glucose plus lactate. Subsequently, the cells were cultured in SFD, with media changes every two
days.

FACS for Single CM and PSC-CM Isolation. For isolating endogenous CMs, we used LP-FACs. We have detailed our LP-FACS
approach previously (1). We reproduce our methods here. We utilized a COPAS SELECT instrument (Union Biometrica).
The COPAS SELECT was updated and rebranded as the FP-500, but the protocol here study does not use the new features
and thus the two are functionally indistinguishable. We optimized sorting for cardiomyocytes by using a sort delay of 8 and
sort width of 6. Additionally, we used the following fluorescence settings: ext gain 50, green gain 200, yellow gain 200, red gain
255, extension integral gain 50, green integral gain 200, yellow integral gain 200, red integral gain 255, green PMT 800, yellow
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PMT 800, red PMT 1100. Coincidence check was selected to ensure proper single event sorting. We typically flowed cells
between 20 - 60 events/second. We maintained cells in Tyrode’s buffer during the sort and sorted them into prepared collection
plates for mcSCRB-seq library prep. To run the machine, we used ClearSort Sheath Fluid (Sony, Lot 1218L345).

PSC-CMs, unlike endogenous CMs, do not retain their shape when dissociated and instead round up. Thus, they fall below
the recommended range of sorting through LP-FACS, but can be readily sorted through conventional FACS. Here, PSC-CMs
were dissociated from culture flasks with TrypLE (5-10 minutes, depending on the timepoint). Cells were strained to remove
clumps and clusters and subsequently sorted into prepared collection plates on either a MoFlo Legacy or MoFlo XDP. We
isolated healthy singlets by first gating on forward and side scatter, followed by forward scatter and pulse width. We used a
propidium iodide stain for further isolation of healthy cells, sorting out GFP+/PI- cells. Interestingly, from D25 onwards, we
observed that GFP+/PI- cells appeared to split into two populations based on PI autofluorescence (despite being PI-). When
analyzed, the high autofluorescence cells also appeared to have higher side scatter and pulse width (Figure S3A). Upon
sorting, these cells also appeared to be visually larger under the microscope. Given this, we sorted cells from both the “normal”
and “larger” populations at D25, D30, and D45.

scRNA-seq Library Preparation and Sequencing. We performed sequencing using the mcSCRB-seq protocol (2). The protocol
has been described at protocols.io at dx.doi.org/10.17504/protocols.io.p9kdr4w. Information about the library design is
provided in the Supplementary Notes; more detailed metadata is also available on Synapse. We sequenced the final, pooled
library on a NovaSeqS4 as 150-base pair paired-end reads. We subsequently demultiplexed into two files such that the read 1
file contains the 8 base pair i7 tag, 6 base pair cell barcode, and 8 base pair UMI; read 2 contains the 150 base pair cDNA
read. We have provided these final demultiplexed reads to GEO at accession GSE164591. However, if the original paired-end
reads from the sequencer are desired, we are happy to provide on request. Mapping of the data was done with kallisto|bustools
(0.46.2) (3), using an index generated from the CellRanger mouse reference concatenated with the ERCC spike-in sequences.
For RNA velocity, mapping was done with kallisto|bustools using special indices with intronic and exonic sequences respectively
from GRCm38.98.

Computational Analysis. Most analyses performed in the paper were done in R (with the exception of RNA velocity, done in
Python); code to reproduce the figures can be found at our Github (https://github.com/skannan4/cm-dysregulation). We
encourage readers to look directly to the code for specific technical details about our method, and we are of course happy to
answer additional questions on request. However, here, we briefly annotate methods used throughout the manuscript.

General Quality Control. (Figure S1A)
Quality control continues to be a major issue in scRNA-seq analysis. Poor quality cells can confound analyses and need to
be removed. In this manuscript, we used the general approach to quality control established in our previous work (4). We
used three parameters: percent of reads going to the top 5 genes, depth, and CM identity. For the first two parameters, we
normalized the computed metric against the median value for that timepoint, since both metrics will inherently vary as CMs
mature. Our thresholds were top5_norm < 1.8 and depth_norm > -0.7. These are somewhat more permissive than the
thresholds we set in our previous work; however, in that study, we were working with many datasets, including droplet datasets
were poor quality cells are more abundant. We found empirically that these relaxed thresholds were sufficient for our higher
quality plate-based data. For CM identity, we used the singleCellNet package (0.1.0) (5), compared against the Tabula Muris
reference (6). We selected all cells whose highest scoring identity was “cardiac muscle cell.”

Trajectory Reconstruction. (Figures 1B, 1C, 2C, 2F, 2G, 2H, 2I, 2J, 2K)
For trajectory reconstruction, we used Monocle 3 (0.2.3.3) (7). Monocle 3 uses fastMNN based on the batchelor package (1.2.4),
which in turn is based on mnnCorrect (8). We discuss some specifics of trajectory reconstruction (e.g. number of principal
components used, batch effect removal) in the Supplementary Notes. More specific details such as trajectory start points
and graph settings can be found in the code.

Differential Gene Expression and Gene Ontology Analysis. (Figures 1D, 2E, 3A-I, 5A-E, S1B, S2A-D, S4A-B)
Differential gene expression analysis for single cell datasets was done in Monocle 3. We typically set a cutoff such that testing
was only done in genes expressed in at least 25% of cells; we used this as our cutoff for whether a gene was “expressed” in a
given cell group. A Benjamini-Hochberg-adjusted p-value threshold of q < 0.05 was used to determine significance.

For bulk datasets, as in Figure 5, we instead used DESeq2 (1.26.0) (9), typically setting the design to compare between
perturbation and control. We used the Benjamini-Hochberg-adjusted p-value threshold of q < 0.05 to determine significance.
However, because bulk samples can detect genes with higher sensitivity, we additionally used a fold change threshold of
| log 2(FC)| ≥ 0.5.

For Gene Ontology analysis, we predominantly used the resource at the Gene Ontology website (http://geneontology.org/),
which in turn links to the PANTHER classification system (10). To more readily visualize Gene Ontology terms while removing
redundancy, we selected the top 150 terms by enrichment and input into REVIGO (11). The exception to this workflow was in
Figure S2, where we instead used WebGestalt 2019 with the following settings: biological processes terms, size limit 850, top
25 terms, weighted cover set expecting 10. Our rationale for using this second method was that the terms provided were more
readily condensed for easier broad visualization.
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RNA Velocity. (Figures 1E, 1F, S3B, S3C)
Intronic and exonic matrices were loaded into Python for analysis with scvelo (0.2.2) (12). Rather than use scvelo’s method

to identify dispersed genes, we used the identified differentially expressed genes associated with each trajectory. Likewise, we
used the computed aligned principal components from Monocle 3 in scvelo. The full dynamical mode was computed for gene
velocities, and this was projected onto the Monocle 3 trajectory.

Gene Clustering. (Figures 1I, IJ)
We detail the approach to compute the time to 10% FC, time to 50% FC, and time to 95% FC in the manuscript. We

identified clusters by performing k-means clustering for the genes on these three parameters. Our approach to determining the
appropriate number of clusters was empirical - we added clusters so long as clusters with new properties emerged, and stopped
once adding a cluster resulted in two clusters with near identical properties. This led to an optimal k = 5.

TF Analysis. (Figures 1K, 4D, 4F, 5G)
TF enrichment analysis was done using WebGestalt 2019, performing over-representation using the “transcription factor

target” database. We started by selecting all TFs with FDR < 0.05. This generally produced a list with significant redundancy;
we used different approaches to handle the redundancy depending on the situation. In Figure 1K, we first took all TFs
identified as enriched for each cluster (or group of clusters, in the case of LA1 + LA2). We manually aggregated redundant TFs
by first labeling TFs into supergroups of interest (for example, MEF2 and RSRFC4 could be combined), and then selecting the
term with the highest enrichment. We then selected the top 25 for visualization in the figure by selecting the TFs with the top
summed enrichments across all clusters - this inherently picked TFs represented across multiple clusters, though we note that
nearly no TFs were identified in only EA1 or LA. For Figure 4D, we were instead interested in top candidates. Thus, we used
the affinity propagation method in WebGestalt, which essentially clusters TFs based on their downstream targets. For each
cluster, we selected as representative the TF with the highest expression in in vivo CMs (which typically matched the TF
selected by WebGestalt). For Figure 5G, we selectively used fold enrichments for our TFs of interest, selecting the term with
the highest enrichment ratio. Activity analysis was done in IPA (13), using the list of differentially expressed genes and the
appropriate fold change for each group.

ATAC-seq Analysis. (Figure S4D)
Our goal with the ATAC-seq datasets was to quantify the percentage of genes in a list of interest with peaks at the

promoter-TSS region. In general, we used the peak calling settings from the original manuscripts, typically with q-value <
0.05 as a threshold. For Liu et al. and Bertero and Fields et al., the appropriate data was downloaded from GEO as BED or
narrowPeaks output files from MACS2 (14, 15). We annotated peaks using HOMER (4.11.1) (16), and subsequently filtered
peaks with annotation “promoter-TSS.” For Greenwald and Li et al., data was available as bigWig files. We therefore converted
to WIG (bigWigToWig) followed by conversion to BED (wig2bed, 2.4.38) (17). We then called peaks from the BED file using
MACS2 (2.2.7.1) using the peak calling settings from the original manuscript as shown on GEO. We then annotated peaks as
above with HOMER. The choice of HOMER genome matched the original study, e.g. hg19 for Liu et al. and Greenwald and Li
et al., and hg38 for Bertero and Fields et al.

Supplementary Notes

Supplementary Note 1: Library Design. Batch effects in library design can play a critical role in the interpretation of results
(18). Indeed, while sophisticated batch correction methods are now available, they are generally at their most efficient for
carefully balanced batch designs, and indeed some confounded batch designs may never be well-resolved even with correction
algorithms. Based on the parameters of our sequencing approach and limitations in sample isolation and preparation, we aimed
to balance our batches as carefully as possible.

In this study, we used the mcSCRB-seq protocol (2) to generate sequencing libraries. Briefly, mcSCRB-seq is a plate-based
UMI protocol. Barcoding of cells arises from two steps - the introduction of a cell-specific barcode during reverse transcription,
and through the i7 barcode added after tagmentation. The first barcode is added on prior to pooling of cells, while the i7 is
added subsequent to pooling. However, the primer used during reverse transcription is expensive, and thus we had access to a
96-barcode set of primers. This inherently limited the number of cells we could pool per initial library to 96 cells. We were
able to generate additional multiplexing power through use of numerous i7 primers, which are comparatively cheaper. However,
the need for many libraries necessarily introduced potential batch effects. Additionally, once pooled, libraries were processed in
batches at different times based on when the samples were isolated as well as limitations in the number of samples we could
simultaneously process. We aimed to balance our libraries and batches such that any technical effects could be subsequently
removed. We used the following design:

Batch 1. Batch 1 was composed of 12 libraries (of 96 cells each), entirely comprised of in vivo CMs. The samples were isolated
between Dec. 2018 and Feb. 2019, and processed for sequencing in May 2019. Each library is composed of a mix of e14, e18,
p0, p4, p8, p11, p14, p18, p22, p28, p35, and p56 CMs, with all timepoints represented in each library. The full preparation for
each of the 12 libraries was completed at the same time.

Batch 2. Batch 2 was comprised of 10 libraries, entirely comprised of in vivo CMs. The samples were isolated between Jun. 2019
and Aug. 2019, and processed for sequencing in Nov. 2019. Each library is composed of a mix of p0, p1, p4, p8, p11, p14 or
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p15, p18, p22, p28, p35, p56, and p84 CMs, with all timepoints represented in each library. The full preparation for each of the
10 libraries was completed at the same time.

Batch 3. Batch 3 was comprised of 10 libraries. The majority of cells were in vitro CMs; however, we spiked in vivo CMs into
each library such that subsequently, we could rule out the possibility that any in vivo vs in vitro difference was entirely due to
batch effects. The samples were isolated between Sept. 2019 and Oct. 2019, and processed for sequencing in Nov. 2019 (albeit
independently from Batch 2). Each library is composed of a mix of D8, D10, D12, D15, D18, D25, D30, D45 PSC-CMs and
either p56 or p84 CMs, with all timepoints represented in each library.

Thus, based on our design, despite the likelihood of technical effects arising both within and between batch, we anticipated that
the significant overlap between libraries and between batches would enable us to better regress out technical differences while
preserving biological variation. We pooled all of the individual libraries at equimolar amounts to produce one final sequencing
library, which sequenced on one sequencing lane (thereby eliminating lane-to-lane effects as a potential technical confounder).

Supplementary Note 2: Generating the Endogenous CM Trajectory. We performed reconstruction of the in vivo CM trajectory
in Monocle 3 using the standard approach, with 5 principal components used in the preprocessing step. We selected this
number of principal components somewhat empirically, though we found that results were generally consistent when varying
that parameter. Initial reconstruction, with no correction approach, yielded a trajectory that demonstrated timepoint-based
differences, but also showed clear separation based on batch (Figure S5A). This was somewhat expected, given that our
batches were prepared at different times. However, we found that the deficit could be readily corrected using mnnCorrect.
We tried setting both “library” and “batch” as the alignment group in mnnCorrect, and found that library-correction yielded
slightly better results (likely owing to the simultaneous removal of within-batch differences). This correction yielded the
trajectory shown in Figure 1B. Comparison of pseudotimes across batches shows generally good concordance (Figure S5B).
However, we note that some batch differences still remain; indeed, one of our rationales for focusing on pseudotime ∈ [0, 42]
was that we suspected that very late stage pseudotime differences (e.g. ∈ [50, 60]) may be more driven by technical differences
rather than biological.

Supplementary Note 3: Generating the PSC-CM Trajectory. We initially used the same approach as above to generate the
PSC-CM trajectory, using 3 principal components and “library” as the mnnCorrect alignment group (as there is only one in
vitro batch). However, the yielded trajectory showed no correspondence with timepoint (Figure S5C). Our initial investigation
found that while some CM-related genes varied across this trajectory, it was also largely driven by transcriptional noise
unrelated to our phenomenon of interest.

We were not entirely surprised by this result as we have previously observed similar occurrences in other datasets, in both
Monocle 2 and 3. We generally suspect that a totally unbiased upstream approach (using either dpFeature as in Monocle
2 (19) or UMAP as in Monocle 3 (7)) can sometimes hone in on processes outside of those of biological interest. Therefore,
we applied a semi-supervised approach that we have previously used with Monocle 2 (20). We first identified differentially
expressed genes between the first (D8) and last (D45) PSC-CM timepoints. We then used only these genes to perform the
preprocessing steps (again, with 3 principal components and “library” as an alignment group). This yielded the trajectory in
Figure 2C, which shows both timepoint-related differences and gene expression changes relevant to maturation. Notably,
we identified more genes differentially expressed across this trajectory than we did between D8 and D45 alone. This likely
occurred due to both an increased number of cells for comparison and better modeling enabled by trajectory reconstuction.

As an aside, the semi-supervised approach utilized above also works for the in vivo trajectory, yielding largely similar results.
We didn’t use it for our in vivo trajectory simply because there was no need to, as timepoint differences were the primary
driver of biological variance in that system.

Supplementary Note 4: In vivo and in vitro trajectory alignment. Our first approach to trajectory alignment involved simply
combining all of the in vivo and in vitro cells and performing reconstruction as above. By setting one of the libraries from Batch
3 (e.g. containing both in vivo and in vitro CMs) as the reference batch, we could use mnnCorrect to correct between-library
differences without removing any biological differences between in vivo and in vitro groups. We used 15 principal components
for dimensionality reduction (again, selected empirically, using more PCs to account for more cells in the combined trajectory)
and “library” as the alignment group. This produced the trajectory in Figure 2F, wherein the in vivo and in vitro CMs
completely separated. We could validate that these differences are largely biological as the in vivo CMs in Batch 3 align with
other in vivo CMs rather than other cells in Batch 3 (Figure S5D).

To force alignment, we used two approaches as discussed in the main manuscript. In the first approach, we first preprocessed
with 15 principal components, followed by mnnCorrect alignment across “library.” We then did a second mnnCorrect alignment
step across “group.” This enables nonlinear correction of both between-library differences and between-group differences. This
yielded Figure 2G. In the second approach, we performed the exact same approach as for Figure 2F, but instead set a
library from Batch 1 (e.g. only in vivo cells) as the reference batch. This yielded Figure 2I. While both approaches yield
comparable approaches, the first seemed to handle true batch effects more effectively (as can be seen by the position of p84
cells from Batch 3).
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Fig. S1. scRNA-seq accurately samples an in vivo CM maturation process. A. Heatmap of cell classifications of in vivo and in vitro CMs used in the study by SingleCellNet.
The Tabula Muris was used as the background reference for training the classifier. B. Gene ontology analysis of genes differentially expressed over the inferred CM maturation
trajectory in Fig. 1B. C. Percentage of counts mapped to spliced and unspliced transcripts for each timepoint.
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Fig. S2. Gene ontology analysis captures biological processes occurring within each temporally-defined gene cluster. A-D. Gene ontology analysis for upregulated
and downregulated genes in each identified cluster. As cluster LA2 has relatively few genes, we combined with LA1 for analysis.
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Fig. S3. scRNA-seq captures a maturation process in PSC-CMs. A. Flow cytometry parameters for GFP+ PSC-CMs at D8, D25, and D30 of sorting. Data shown for one
cell line (Line 2) but comparable results were seen in other lines. AF = autofluorescence. B. RNA velocity stream plot projected onto inferred PSC-CM trajectory, labeled by
timepoint. C. RNA velocity length across Monocle 3-inferred pseudotimes for PSC-CMs. D. Pseudotime scores per timepoint for the inferred trajectory, further labeled by cell
line. E. Pseudotime scores per timepoint for the inferred trajectory, further labeled by putative size category (as in S3A).
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Fig. S4. PSC-CMs show dysregulated genes compared to in vivo CM maturation. A. Gene ontology analysis of all genes globally differentially expressed between
endogenous CMs (at all timepoints) and PSC-CMs. B. Dimensionality reduction of four human PSC-CM studies from the literature, labeled by timepoint. Complete separation of
timepoints indicates a potential batch effect. C. Comparison of gene dynamics parameters between correctly regulated and differentially regulated genes in mouse and human
PSC-CMs. For human PSC-CMs, correctly regulated genes were defined as genes with correct direction of differential expression in at least two studies. All comparisons were
statistically significant by t-test with α = 0.05. D. Percentage of correctly regulated or dysregulated genes in human PSC-CMs with ATAC-seq peak in the promoter-TSS region.
Points are labeled by study, each of which encompasses a different timepoint, and points are connected by sample. E. STRING output networks of the identified dysregulated
maturation TFs. Left shows connectivity by edge confidence, while right shows connectivity by type of evidence for interaction.
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Fig. S5. Balanced library design enables correction of scRNA-seq batch effects. A. Uncorrected Monocle 3-inferred trajectories of in vivo CMs, labeled by batch (left) or
timepoint (right). B. Pseudotime scores per timepoint for the inferred trajectory, as in Fig 1C, further labeled by batch. C. Completely unbiased Monocle 3-inferred trajectory for
PSC-CMs. D. Combined in vivo CM and PSC-CM trajectories inferred by Monocle 3, as in Fig 2F. Endogenous CMs from Batch 3 (which contained both endogenous and
PSC-CMs) are labeled.
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